CMR Institute of Technology, Bangalore Department: Mechanical Engineering			
Semester: 02 Course : M.Tech			CMR INSTITUTE OF TECHNOLOGY
Composite Materials Technology 14MST21			Lectures/week: 04
Course Instructor(s): Mr. T	rishul.M.A		
Course duration: Jan 2016	to May 2016		

# Class	Chapter Title/ Reference	Topic Covered	Percentage of portion covered	
01035	Literature		Reference	Cumulative
1-10	TB1	Introduction to Composite Materials: Definition, classifications, types of matrices Materials, Characteristics and selection, Types of Composites, Prepegs and sandwich construction, Metal Matrix Composites. Macro Mechanics of a Lamina : Hooke's law for different types of Material, Derivation of nine independent constants for orthotropic Material, Hooke's law for two dimensional angle lamina, Numerical problems.	20%	20%
11-20	TB1, RB1	Micro mechanical Analysis Of a Lamina : Introduction, Evaluation of four elastic Moduli, Rule of mixture, numerical problems. Failure criteria: Failure criteria for an elementary composite layer, Maximum stress and strain criteria, Tsa-Hill theory, Tsai, Wu tensor theory, Numerical problem, practical recommendations.	20%	40%
21- 30	TB1, RB1	Macro Mechanical Analysis of Laminate: Introduction, code, Kirchoff hypothesis, Classical Lamination Theory, A, B, and D matrices, Special cases of laminates, Numerical problems.	20%	60%
31-40	TB2, RB2	Analysis of Composite Structures: Optimization of Laminates, composite laminates of uniform strength, application of optimal composite structures, composite pressure vessels, spinning composite disks, composite lattice structures.	20%	80%

41-50	TB2	Manufacturing and Testing: Layup and curing - open and closed mould processing, Hand lay-up techniques, Bag moulding and filament, winding. Pultrusion, Pulforming, Thermoforming, Injection moulding, Cutting, Machining, joining and repair. NDT tests – Purpose, Types of defects, NDT method - Ultrasonic inspection, Radiography, Acoustic emission and Acoustic ultrasonic method. Applications: Aircrafts, missiles, Space hardware, automobile, Electrical and Electronics, Marine, Recreational and sports equipment-future potential of composites	20%	100%
-------	-----	---	-----	------

Syllabus for Internal Assessment Tests (IAT)*

Sessional #	Syllabus
T1	Class # 01 – 25
T2	Class # 26 - 50

* See calendar of events for the schedules of IATs.

LITERATURE:

Deck Turne Code			Publication info		
Book Type	Code	Author & Title	Edition & Publisher	ISBN #	
Text Book	TB1	Autar K. Kaw, Mechanics of Composite materials	CRC press Newyork	9780849313431	
Text Book	TB2	MadhijitMukhopadhay, Mechanics of Composite Materials & Structures	Universities Press 2004.	8173714770	
References	RB1	Mein Schwartz, Composite materials handbook	McGraw Hill book company, 1984	9780070558199	
References	RB2	Michael W.Hyer, Stress analysis of FRP composites	McGraw Hill International	9781932078862	

CMR Institute of Technology, Bangalo	1112	
Department: Mechanical Engineering		
Semester: 02 (M.Tech) February 2016 – May 2016		CMR INSTITUTE OF TECHNOLOGY
Advanced Machine Design	Lectures/week: 06	
Course Instructor: Dr. Vijayananda Ka		

Lecture #		Topics	Portions coverage	
	Sections		Individual	Cumulative
1-2	RB 3: 2.1, 2.8 RB1: 1.1 - 1.8	Introduction to AMD	-	-
3-8	TB1 1 & 2	1a) Failure and modes of failure: Design definition, Challenges in design, design objectives, failure. Failure modes. Illustrative examples.		8
	TB1 3.1 to 3.4, 4 & 5	1b) Strength of engineering metal, State of stress: Condon-Morse curves, space lattices, Elastic and plastic deformation. State of stress at a point, principal stresses (normal and shear). Relationship between stress and strain. Illustrative examples.		10
13-16	TB1 6	1c) Theories of failure: Brush up of max normal stress theory, max shear stress theory, max normal strain theory, total strain energy theory, Distortion energy theory, Mohr's failure theory.	4	14
17-22	TB1 7.1 to 7.5	 2) Fatigue of materials: Introductory, nature of fatigue, fatigue loading, fatigue testing at labs, fatigue design 	12	26
23-28	TB1 7.6 to 7.9	3) Stress – Life approach: HCF introduction, SN curves, statistical nature of SN curves, factors affecting SN curves, influence of mean stress, Basquin's relationship to estimate fatigue life	12	38
29-34	TB1 11	 Strain – Life approach: LCF introduction, strain cycling concept, strain life curve and LCF relationships, mean stress effects 	12	50
	TB1 3.5 to 3.8, 8.5	5) LEFM approach: Fracture mechanics basics, modes of fracture, introduction to LEFM, fracture toughness. Fracture mechanics approach to crack propagation	18	68
41-46	TB1 12	6) Notches and their effects: Stress concentrations and gradients. Stress concentration effects. SCF for elastic range, Haigh drawings, notch strain analysis, Neuber's and Glinka's rule. Application of FM to crack growth	12	70
47-52	TB1 8	7) Fatigue from Variable Amplitude Loading: Damage accumulation, Cumulative damage theories, Life prediction based on stress-strain, cycle counting methods		84
53-58	TB1 17.1 to 17.4	8) Surface Failure: Introduction to wear, Adhesive wear, Abrasive wear, corrosion wear, surface fatigue wear, deformation wear, fretting wear and impact wear	16	100
	TB1 13-15, 17.5 to 7.6	9) Creep, fretting, shock and impact, corrosion:Introduction to creep and behaviors of creep, introduction to fretting, introduction to corrosion		

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Syllabus
IAT-1	Class # 01 – 22
IAT-2	Class # 23 – 40
IAT-3	Class # 41-58

REFERENCES

Book Tyme	Code	Toda Author & Title Publication infor		mation	
Book Type	Coue	Author & Title	Edition // Publisher	ISBN	
Text Book		Jack A Collins, Failure of Materials in Mechanical Design	John Wiley, New York, 1992	0-586-59690-1	
Text Book		Ralph I Stephens, Ali Fatemi, Metal Fatigue in engineering	John Wiley, New York, 2001	0-06-056994-8	

CMR Institute of Technology, Bangalo	110		
Department: Mechanical Engineering			
Semester: 02 (M.Tech) February 2016 – May 2016			CMR INSTITUTE OF TECHNOLOGY
Dynamics and Mechanism Design 12MMD23			Lectures/week: 06
Course Instructor: Dr. Vijayananda Kaup			

Lecture #	Book &	Topics	Portions	coverage %
	Sections	*	Individual	Cumulative
1 - 11	RB 3: 2.1, 2.8 RB1:	Geometry of Motion: Introduction, analysis and synthesis, Mechanism terminology, planar, spherical and spatial mechanisms, mobility, Grashoffs law, Equivalent mechanisms, Unique mechanisms, Kinematic analysis of plane mechanisms: Auxiliary point method using rotated velocity vector, Hall-Ault auxiliary point method, Goodman's indirect method.	12.5	12.5
12 - 20	TB 1: 1.2, 1.3, 1.4, 1.5	Generalized Principles of Dynamics: Fundamental laws of motion, Generalized coordinates, Configuration space, Constraints, Virtual work, principle of virtual work, Energy and momentum, Work and kinetic energy, Equilibrium and stability, Kinetic energy of a system, Angular momentum, Generalized momentum.	12.5	12.5
21 - 27	TB 1: 2.1, 2.2, 4.1, 4.2	Lagrange's Equation: Lagrange's equation from D'Alembert's principles, Examples, Hamilton's equations, Hamilton's principle, Lagrange's equation from Hamilton's equations, Derivation of Hamilton's equation, Examples.	12.5	12.5
28-36	RB 1: 10.1 – 10.6	Synthesis of Linkages: type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, precision positions, Structural error, Chebychev spacing, Two position synthesis of slider crank mechanism, Crank - rocker mechanisms with optimum transmission angle		12.5
37-46	RB 1: 10.7 -10.11	Graphical Methods of Dimensional Synthesis: Two position synthesis of Crank -rocker mechanisms, three position synthesis, Fourth position synthesis (point precision reduction) Overlay method, Coupler curve synthesis, Cognate linkages.	12.5	12.5
47-52	RB 1:	Analytical Methods of Dimensional Synthesis: Freudenstein's equation for four bar mechanism and slider crank mechanism, Examples, Bloch's method of synthesis, analytical synthesis using complex algebra.		12.5
53-57	RB 2: 10.1 - 10.5	System Dynamics: Gyroscopic action in machines, Euler's equation of motion, Phase Plane representation, Phase Plane Analysis, Response of Linear systems to transient disturbances.	12.5	12.5
58-62	RB 1: 11.1, 11.3, 11.5, 11.6	Spatial Mechanism: Introduction, Position analysis problem, velocity and acceleration analysis, Eulerian angles.	12.5	12.5

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Syllabus
IAT-1	Class # 01 – 23
IAT-2	Class # 24 – 42
IAT-3	Class # 43 - 62

REFERENCES

Pool: Type	Code	Author & Title Publication info		rmation	
Book Type	Coue	Author & Title	Edition // Publisher	ISBN	
Text Book	TB1	Greenwood "Classical Dynamics"	Prentice Hall of India, 1988	0-486-69690-1	
References	RB1	6 5	Fifth Edition Mc Graw Hill Company	0-07-056884-7	
References	RB2	A.G.Ambedkar" Mechanism and Machine Theory"	РНІ, 2007.	978-81-203-3134-1	
References	RB3	, , , , , , , , , , , , , , , , , , , ,	3rd Edition, East West press,	81-85938-93-8	

CMR Institute of Technology, Bangalore

Department: Mechanical Engineering

Semester: MTech - 2nd sem.

Subject: Advanced Theory of Vibrations

Course Instructor(s): Krishnarao Dhuri

Course duration: 1Feb2016 – 11 May 2016

Lesson Plan

14MDE24

Section(s): -

Class Chapter Title / # Reference		Торіс	-	e of portion ered
	Literature		Reference	Cumulative
1 2		Free vibration of single degree of freedom systemswithout damping, Free vibration of single degree of freedom systems with damping,	-	
3		Forced vibration of single DOF-systems		
4		Forced vibration of single DOF-systems Continue		
5		Natural frequency	-	
6		Understanding transient vibrations	1	
7		Transient vibration of single DOF systems - Impulse excitation	-	
8	Review of Mechanical Vibrations	Transient vibration of single DOF systems - Impulse excitation continue	24%	24%
9		Transient vibration of single DOF systems - arbitrary excitation	-	
10		Laplace transform formulation	-	
11		Convolution method	-	
12		Transient vibration of single DOF systems - Pulse excitation and rise time		
13		Practical aspects of transient vibrations	-	
14		Design for transient vibrations	1	
15		Shock response spectrum and shock isolation	-	
16		Introduction to Vibration isolation theory		
17	Vibration Control	vibration isolation	22 %	46 %

CMR INSTITUTE OF TECHNOLOGY Lectures/week: 05

18		motion isolation for harmonic excitation		
19		Practical aspects of vibration analysis, shock isolation,	-	
20		Dynamic vibration absorbers	-	
21		Dynamic vibration absorbers continue	-	
22		Vibration dampers	-	
23		Vibration measurement introduction	-	
24		Transducers – accelerometer, vibration pickups	-	
25		Frequency measuring equipments	-	
26		Vibration exciters	-	
27		Signal analysis	-	
28		Advances in vibration controls	-	
29		Dynamic testing of machines and structures		
30	-	Practical aspects of modal analysis	-	
31		Experimental modal analysis – hardware	-	
32		Algorithms for modal analysis	-	
33		Algorithms for modal analysis continue		
34		Machine condition monitoring and diagnosis		
35	Modal analysis &	Vibration based condition monitoring		72%
36	Condition Monitoring	Introduction to Non-linear vibrations	26%	, 2,0
37		Sources of nonlinearity		
38		Qualitative analysis of nonlinear systems- Phase- plane	_	
39		Conservative systems	1	
40		Stability of equilibrium, methods of isoclines	1	
41		Perturbation method	-	
42		Perturbation method continue	-	

43		Method of iteration		
44	-	Self-excited oscillations	-	
45		Random phenomena, Time averaging and expected value		
46		Various terms related with random vibrations – stationarity		
47		Frequency method, time vs frequency method		
48		Frequency response function		
49	Random	Use of probability distribution for random vibrations	-	
50	Vibrations	Correlations – Auto and cross-correlations	16%	88%
51		Practical usage of correlations	-	
52		Power spectrum and power spectral density		
53		Fourier transform	-	
54		Introduction to FFT	-	
55		Tools available for random vibrations analysis		
56		Introduction to Vibrating string		
57		longitudinal vibrations of rods		
58		longitudinal vibrations of rods continue		
59	Continuous Systems	Torsional vibrations of rods	12%	100%
60		Torsional vibrations of rods continue		
61		Euler equation for beams.		
62		Timoshenko beam		

Syllabus for Sessionals :

Sessional #	Syllabus
T1	Class # 01 – 28
T2	Class # 29 – 44
Т3	Class # 45– 62

Literature:

Book Type	Code	Author & Title	Edition & Publisher
Text Book	TB1	Theory of vibrations with applications, W.T. Thomson	Pearson publication
Text Book	TB2	Fundamentals of Mechanical vibration , S.G. Kelly	McGraw-Hill, 2000
Text Book	TB3	Mechanical vibrations, S.S. Rao	Pearson education, 4th Edition

CMR Institute of Technology, Bangalore	110		
Department: Mechanical Engineering			
Semester: MTech - 2 nd sem.	Section(s): -		CMR INSTITUTE OF TECHNOLOGY
Subject: Design Optimization		14CAE251	Lectures/week: 05
Course Instructor(s): Krishnarao Dhuri			
Course duration: 1 Feb 2016 – 11 May 2016			

Class #	Chapter Title / Topic Reference		-	e of portion ered
	Literature		Reference	Cumulative
1		Evolution of design topology		
2		Introduction to design and design process		
3		Design vs analysis		
4		Role of computers in design cycle		
5		Impact of CAE on design		
6		Numerical modeling with FEA and correlation		
	Engineering	with physical tests	20%	20%
7	design practice	Optimization problems in automotive	20/0	20/0
8		Optimization problems in aerospace		
9		Optimization of metallic and composite		
		structures,		
10		Minimization and maximization problems		
11		Multi-disciplinary Optimization		
12		Multi-objective optimization		
13		Types of optimization problems. Mathematics		
		representation for optimization problem		
14		Design variables and design constraints,		
		Feasible and infeasible designs		
15		Representation of Equality and inequality		
		constraints optimization		
16		Linear and non-linear optimization.		
17	Optimum design	Optimization theory- fundamental concepts,		
	problem	global and local minimum	20%	40%
18	formulation	Gradient vector and Hessian matrix,		
19		concept of necessary and sufficient conditions	1	
20		Optimization for unconstrained problems	1	
21		Optimization for Constrained problems]	
22		Continue Optimization for Constrained	1	
		problems		
23		Lagrange multiplier		

24		Kuhn-Tucker conditions		
25		Sensitivity analysis		
26		Linear and non-linear approximations		
27		Gradient based optimization methods - dual		
		and direct.		
28		Conceptual design optimization and design fine		
		tuning.		
29	Sensitivity	Combined optimization – optimization with		
	analysis and	different objectives		
30	optimization case	Optimization of multiple static and dynamic	20%	60%
	studies	loads		
31		Optimization for transient simulations		
32		Case study 1- Mechanical system problem		
33		Continue case study 1		
34		Case study 2 – Interdisciplinary problem		
35		Continue case study 2		
36		Continue case study 2		
37		Introduction to Design for manufacturing		
38		Manufacturing methods and rules		
39		Applying manufacturing constraints to		
		optimization problems.		
40		Discussion about design for manufacturing		
		problem		
41		Discussion about unbound problems, over		
		constrained problems, problems with number		
	Manufacturability	of multiple solutions		
42	in optimization	Continue discussion around constraint	20%	80%
	problem	screening. Design move limits		
43		Active and inactive constraints, constraint		
		violations		
44		Local and global optimum.		
45		Results interpretation for optimization problem for any solver		
46		Discussion about different optimization solvers		
47		Case study – optimization using MATLAB		
48		Continue case study		
49		Introduction to dynamic programming		
50		Applications of dynamic programming		
51	Dynamic	How dynamic programming efficient over other	20%	100%
F 2	programming	optimization methods		
52		Multistage decision processes		
53		Principle of optimality for dynamic programing		

54	Computational procedure in dynamic programming	
55	The Knapsack problem	
56	Continue discussion on Knapsack problem	
57	Initial value problem in dynamic optimization	
58	More examples on dynamic optimization	
59	Examples	
60	More examples	

Syllabus for IATs:

Sessional #	Syllabus
T1	Class # 01 – 24
T2	Class # 25 – 48
Т3	Class # 49– 60

Reference books:

- 1. Engineering optimization: Theory and practice, S.S. Rao, John Wiley, 2009
- 2. Introduction to optimum design, Jasbir Arora, McGraw Hill, 2011