VI Sem Lesson Plan

CMR Institute of Technology,	211		
Department: Mechanical Engin			
Semester: 06	Sections: A & B		CMR INSTITUTE OF TECHNOLOGY
Mechanics of Materials		10ME61	Lectures/week: 05
Course Instructor: Dr.S.V.PRA	KASH		
Course duration: 18 th , Jan 201	6 - 21 st May 2016		

Lecture	Chapter Title /		Portions	coverage %
#	Reference Literature	Topics	Individual	Cumulative
01		Introduction,		
02		Automation definition, Types of automation		
03		CIM, Processing in manufacturing		
04	UNIT 1:	Production concepts		
05	Computer Integrated Manufacturing	Mathematical Models-Manufacturing lead time, production rate, components of operation time, capacity,	12.5%	12.5%
06	Systems	Utilization and availability, Work-in- process, WIP ratio, TIP ratio		
07		Problems using mathematical model equations		
08		Problems using mathematical model equations		
09		Automated flow line symbols, objectives,.		
10		Work part transport-continuous, Intermittent, synchronous, Pallet fixtures		
11	UNIT 2: High Volume	Transfer Mechanism-Linear-Walking beam, roller chain drive	12.5%	25%
12	Production System	Rotary-rack and pinion, Rachet & Pawl, Geneva wheel,		
13		Buffer storage, control functions-sequence, safety, quality		
14		Automation for machining operation		

15		General terminology and analysis,		
16		Analysis of Tranfer Line without storage		
177		Upper bound approach, lower bound		
17	UNIT 3:	approach and problems,		
	Analysis Of	Analysis of Transfer lines with storage	12.5%	
18	Automated Flow	buffer, Effect of storage, buffer capacity	12.3%	37.5%
	Line & Line	with simple problems		
19	Balancing	Partial automation-with numerical problems		
		Flow lines with more than two stages		
20		Manual Assembly lines, line balancing		
		problem		
21		Work station process time, Cycle time		
22		Precedence constraints and precedence		
		diagram		
23	UNIT 4:	Balance delay methods of line balancing-	12.5%	50%
2.1	Minimum Rational	largest Candidate rule	12.370	30%
24	Work Element	Kilbridge and Westers method		
25		Ranked positional weight method		
26		Computerized line balancing.		
27		Design for automated assembly systems,		
		Types of automated assembly system		
28		Parts feeding devices-elements of parts		
		delivery system-hopper, part feeder		
29	UNIT 5:	Selectors, feedback, escapement and		
30	Automated	placement		
	Assembly Systems	Analysis of multi-station assembly machine	12.5%	62.5%
31		Analysis of single station assembly		
32		Automated Guided Vehicle System:		
		Introduction Section Section		
33		Vehicle guidance and routing, System management,		
		Quantitative analysis of AGV's with		
34		numerical problems and application		
25		Introduction, Computer Aided Process		
35	UNIT 6:	Planning		
36	Computerized	Retrieval types of process planning	12.5%	75%
37	Manufacturing	Generative type of process planning		
38	Planning System	Material requirement planning		
		iviacitai requirement pianning		

39		Fundamental concepts of MRP inputs to MRP		
40		Capacity planning		
41		Introduction to CNC		
42		Elements of CNC		
43		CNC machining centers		
44	UNIT 7:	Part programming	12.5%	87.5%
45	CNC Machining Centers	Fundamental steps involved in development	12.570	07.570
43	Contens	of part programming for milling		
46		Fundamental steps involved in development		
40		of part programming for turning		
47		Introduction to Robot configuration		
48		Robot motion,		
49	UNIT 8:	Programming of Robots	12.5%	100%
50	Robotics	End effectors		100%
51		Robot sensors		
52		Robot applications		

Syllabus for Internal Assessment Tests (IAT)*

IAT#	Syllabus
IAT-1	Class # 01 – 20
IAT-2	Class # 21 - 40
IAT-3	Class # 41- 52

^{*} See calendar of events for the schedules of IATs.

Book Type	Code	Author & Title	Publication info

			Edition & Publisher	ISBN No.
Text Book	TB1	Automation, Production system & Computer Integrated manufacturing by M. P. Groover	Pearson Education, 2007	
Text Book	TB2	Principles of Computer Integrated Manufacturing by S. Kant Vajpayee	Prentice Hall India	
Reference Book	RB1	Computer Integrated Manufacturing by J. A. Rehg & Henry. W. Kraebber		
Reference Book	RB2	CAD, CAM by Ibrahim Zeid		

CMR Institute of Technology,	.110		
Department(s): Mechanical E			
Semester: 06	Section(s):A		CMR INSTITUTE OF TECHNOLOGY
Design of Machine Elements-	·II	10ME62	Lectures/week: 06

Course Instructor(s): Prof. Rajendra Prasad Reddy

Session: 2015-16 (even sem)

Lecture	Book &	Topics	Portions coverage %	
#	Sections		Individual	Cumulative
1-10	TB1: 1.2 TB1: 2.2-2.11	1a) Curved Beams: Difference between a curved beam and a straight beam, Derivation for a bending stress in a curved beam, Illustrative examples involving punch presses, crane hooks, S-link, closed rings and chain links 1b)Cylinders & Cylinder heads: Lame's equations, compound cylinders, stresses due to different types of fits, cylinder heads, illustrative examples	16	16
11-19	TB1: 3.1-3.18	2)Springs: Helical springs –Shear stress induced and deflection, Design procedure, Concentric springs, leaf springs, laminated springs, semi elliptical leaf springs, illustrative examples	14	30
20-28	TB1:4.1- 4.14,4.15- 4.21.2	4) spur & Helical Gears: Spur Gears: Terminology, Tooth profiles, Interference in Involute gears, Design procedure, Helical Gears: Terminology, formative no.of teeth, Design procedure, Illustrative examples	14	44
29-37	TB1: 5.1- 5.7,5.8-5.15	5) Bevel and Worm Gears: Bevel Gears: Terminology, Formative no. of teeth, Design procedure, Worm Gears: Terminology, Design procedure, Illustrative examoles	14	58
38-47	TB1: 6.1-6.6, 6.7-6.17	6) Clutches and Brakes: Single and multi plate clutches, cone clutch, Single and double shoe brakes, Band brake, simple and differential band brakes, Illustrative examples .	16	74
48-52	TB1:8.1-8.5	2) Belts,Ropes and Chains: Flat belts: length and cross section, selection of V-belts, ropes and chains for different applications .	08	82
53-60	TB1-7.1-7.18	7) Lubrication and Bearings: Lubricants, their properties, bearing modulus, co.eff of friction, min oil film thickness, heat generated, design procedure for Ball and Roller bearings, Illustrative examples	12	94
61-64	TB1: 8.1- 8.5.8	8) IC engine parts: Design of piston, connecting rod and crank shaft, Illustrative examples	06	100

Syllabus for Internal Assessment Tests (IAT)*

IAT#	Syllabus
IAT-1	Class # 01 – 19
IAT-2	Class # 20 – 47
IAT-3	Class # 48 – 64

^{*} See calendar of events for the schedules of IATs.

Literature:

Dools Tomo	Codo	A4h o 0 Ti4lo	Publication information		
Book Type	Code	Author & Title	Edition // Publisher	ISB	
Text Book	TB1	JBK Das Design of Machine Elements	I st edition,2013 Sapna Book House	9788128003066	
Text Book	TB2	VB Bhandari Design of Machine Elements	5 th edition, Tata McGraw-Hill	9780070681798	
Reference	RB1	Hall,Halowenko Machine Design	5 th edition, Tata McGraw-Hill	9780070634589	
Reference	RB2	PC Sharma, Aggarwal Machine Design	12thedition,2012 Kataria & sons		

Note: From time to time, assignments will be posted on

http://sites.google.com/a/cmrit.ac.in/b-rajendra-prasad-reddy

CMR Institute of Technology, E	N/L			
Department(s): MECHANICAL	CMR INSTITUTE OF TECHNOLOGY			
Semester: 06	Section(s): A & B			
HEAT AND MASS TRANSFER		10ME63	Lectures/week: 06	
Course Instructor(s): Dr. C. SOLAIMUTHU				
Course duration: 18 th Jan 2010	6 – 21 st May 2016			

Class #	Chapter Title / Reference	Торіс	Percentage of portion covered (%)	
"	Literature		Reference	Cumulative
1		Introductory Concepts And Definitions: Modes of heat transfer: Basic laws governing conduction, convection, and radiation heat transfer		
2		Thermal conductivity; convective heat transfer coefficient; radiation heat transfer; combined heat transfer mechanism. Boundary conditions of 1 st , 2 nd and 3 rd kind		
3	UNIT – I TB1:1.1-1.7, 1.10-1.11,	Conduction: Derivation of general three dimensional conduction equation in Cartesian coordinate		
4	2.1-2.10. RB3: 1.1-1.14	Special cases, discussion on 3-D conduction in cylindrical and spherical coordinate systems (No derivation)	12.5	12.5
5		One dimensional conduction equations in rectangular, cylindrical and spherical coordinates for plane		
6		Composite walls. Overall heat transfer coefficient. Thermal contact resistance		
7		Numerical Problems		
8		Numerical Problems		
9	UNIT – II	Variable Thermal Conductivity: Derivation for	12.5	25

	TB2: 3.1-3.10	heat flow and temperature distribution in Plane wall		
10	RB2: 2.1-2.8	Critical thickness of insulation without heat generation, Thermal resistance concept & its importance		
11	-	Heat transfer in extended surfaces of uniform cross-section without heat generation		
12	_	Long fin, short fin with insulated tip and without insulated tip		
13		Fin connected between two heat sources		
14		Fin Efficiency and Effectiveness		
15	-	Numerical Problems		
16		Numerical Problems		
17	UNIT – III TB2: 4.1-4.10, 5.1-5.8	One-Dimensional Transient Conduction: Conduction in solids with negligible internal temperature gradient (Lumped system analysis)	12.5	35
18	RB3: 3.1-3.12	Use of Transient temperature charts (Heisler's charts) for transient conduction in slab		
19		Long cylinder and sphere		
20		use of transient temperature charts for transient conduction in semi-infinite solids.		
21	-	Numerical Problems		
22		Numerical Problems		
23	_	Numerical Problems		
24		Numerical Problems		
25	UNIT – IV	Concepts And Basic Relations In Boundary Layers: Flow over a body velocity boundary		
	TB2:6.1-6.18 RB3: 4.1-4.15	layer; critical Reynolds number; general expressions for drag coefficient and drag force	12.5	50
26	1,05. 4.1-4.15	thermal boundary layer; general expression for local heat transfer coefficient; Average heat transfer coefficient; Nusselt number		

27		eta distribuida di sensita di la constanti di sensita d		
27		Flow inside a duct- velocity boundary layer,		
		hydrodynamic entrance length and hydro		
		dynamically developed flow; flow through tubes		
		(internal flow discussion only) Numericals based		
		on empirical relation given in data handbook.		
28	-	Free Or Natural Convection: Application of		
		dimensional analysis for free convection		
29		physical significance of Grashoff number; use of		
		correlations of free convection in vertical,		
		horizontal and inclined flat plates, vertical and		
		horizontal cylinders and spheres		
30		Numerical Problems		
31	-	Numerical Problems		
32	UNIT – V	Forced Convections: Applications of dimensional		
	TB1: 7.1-7.8,	analysis for forced convection		
33		Physical significance of Reynolds, Prandtl,	12.5	65
	7.12, 7.14-7.15,	Nusselt and Stanton numbers	12.5	0.5
	8.1-8.2, 8.8	Nusseit and Stanton numbers		
34		Use of various correlations for hydro dynamically		
	RB1: 5.1-5.11	and thermally developed flows inside a duct		
35		Use of correlations for flow over a flat plate		
36		Flow over a cylinder and sphere		
37		Numerical Problems		
38		Numerical Problems		
39	UNIT – VI	Heat Exchangers: Classification of heat		
		exchangers; overall heat transfer coefficient,		
	TB2: 9.1-9.9	fouling and fouling factor	12.5	55
40	RB2: 6.1-6.8.5	LMTD Method	12.0	
41	-	Effectiveness-NTU Method		
42		Analysis of heat exchangers by LMTD and		
L	t	ı	i.	i .

		Effectiveness-NTU methods		
43		Numerical Problems		
44		Numerical Problems		
45	UNIT – VII TB2: 11.1- 11.16	Condensation And Boiling: Types of condensation (discussion only) Nusselt's theory for laminar condensation on a vertical flat surface	12.5	75
46	RB4:7.1-7.15	Use of correlations for condensation on vertical flat surfaces, horizontal tube and horizontal tube banks		
47		Reynolds number for condensate flow		
48		Regimes of pool boiling, pool boiling correlations		
49		Numerical Problems		
50		Mass Transfer definition and terms used in mass transfer analysis, Ficks First law of diffusion (no numericals)		
51		Numerical Problems		
52		Radiation Heat Transfer: Thermal radiation; definitions of various terms used in radiation heat transfer		
53		Stefan-Boltzman law, Kirchoff's law, Planck's law and Wein's displacement law	12.5	75
54	UNIT -VIII TB2:10.1-10.11	Radiation heat exchange between two parallel infinite black surfaces, between two parallel infinite gray surfaces		
55	RB4: 8.1-8.8	Effect of radiation shield; intensity of radiation and solid angle; Lambert's law		
56		Radiation heat exchange between two finite surfaces-configuration factor or view factor		
57		Numerical Problems		
58		Numerical Problems		
L	I		l .	

Syllabus for Sessional:

Sessional #	Classes	Syllabus
T1	1-21	34%
T2	22-40	30%
T3	41-63	36%

Literature:

Book Type	Code	Author & Title	Publica	ation info
			Edition & Publisher	ISBN #
Text Book	TB1	Heat Mass Transfer by Tirumaleshwar	Pearson education 2006	978-81-775-8519-3
Text Book	TB2	Heat Mass Transfer by R C Sachdeva	New Age International 2010	978-81-224-2785-1
Reference Book	RB1	Heat Transfer – A basic Approach by M N Ozisik	Tata McGraw Hill 2002	978-00-704-7982-1
Reference Book	RB2	Heat Transfer – A Practical Approach by Yunus A- Cengel	Tata McGraw Hill	978-00-724-5893-0
Reference Book	RB3	Principles of Heat Transfer by Kreith Thomas Learning 2001	Kreith Thomas Learning 2001	978-04-956-6770-4
Reference Book	RB4	Heat Transfer by P.K. Nag	Tata McGraw Hill 2011	978-00-707-0253-0
Data Handbook	DH	Heat and Mass Transfer by C P Kothadaraman and S Subramanyan	New Age International 2014	978-81-224-3595-5

Staff In-charge (C.I) (CCI) HOD-Mechanical Engg

CMR Institute of Technology, Bangalore

Department: Mechanical Engineering

Semester: 06 Sections: A & B

Finite Element Methods

Course Instructor: Mr. Prashant S. Hatti

Course duration: Jan 2016 –June 2016

Lecture #	Book &	Topics	Topics Portions covera		
	Sections		Individual	Cumulative	
1-8	TB 2 : 1.1 – 1.6	Introduction: Equilibrium equations in elasticity subjected to body force, traction forces, and stress-strain relations for plane stress and plane strains. General description of Finite Element Method, Application and limitations. Types of elements based on geometry. Node numbering, Half band width.	12.5	12.5	
9-18	TB 1: 3.8, 2.2	Solution of 1-D Bars: Solutions of bars and stepped bars for displacements, reactions and stresses by using penalty approach and elimination approach. Guass-elimination technique		25	
19-28	TB1:	Trusses: Stiffness matrix of Truss element. Numerical problems	12.5	37.5	
29-36	B 1 : 8.1 – 8.5	Beams: Hermite shape functions for beam element, Derivation of stiffness matrix. Numerical problems of beams carrying concentrated, UDL and linearly varying	12.5	50	
		Basic Procedure: Euler - Lagrange equation for bar, beam			
37-44	TB 2: 5.1 – 5.9	(cantilever / simply supported fixed) Principle of virtual work, principle of minimum potential energy, Raleigh's Ritz method. Direct approach for stiffness matrix formulation of bar element. Galerkin's method.		62.5	

45-52	TB 1: 5.1 – 5.4,	Interpolation Models: Interpolation polynomials- Linear, quadratic and cubic. Simplex complex and multiplex elements. 2D PASCAL's triangle. CST elements-Shape functions and Nodal load vector, Strain displacement matrix and Jacobian for triangular and rectangular element.	12.5	75
53-58	RB 2: 13.1 – 13.8, TB 2: 4.1 – 4.9	Higher Order Elements: Langrange's interpolation, Higher order one dimensional elements-Quadratic and cubic element and their shape functions. Shape function of 2-D quadrilateral element-linear, quadric element Isoparametric, Sub parametric and Super parametric elements. Numerical integration: 1, 2 and 3 gauge point for 1D and 2D cases	12.5	87.5
58-62	TB 2 : 13.1 – 13.5, 14.1 – 14.5	Heat Transfer: Steady state heat transfer, 1D heat conduction governing equations. Functional approach for heat conduction. Galerkin's approach for heat conduction. 1D heat transfer in thin fins.	12.5	100

Syllabus for Internal Assessment Tests (IAT)*

IAT#	Syllabus
IAT-1	
IAT-2	
Improvement Test	

	Literature.					
Book Type	G. J.	A41 0 TE-41-	Publication informa	ation		
	Code	Author & Title	Edition // Publisher	ISBN		
Text Book	TB1	T.R.Chandrupatla, A.D Belegunde	3 rd Edition, PHI	0-13-061591-9		
Text Book	TB2	S.S. Rao, "Finite Element Method in Engineering"	4th Edition, Elsevier	0-7056-7828-3		
Reference	RB1	S M Murigendrappa, "Fundamentals of Finite Element method"	2 nd Edition, Interline Publishing	81-7296-098-0		
Reference	RB2	S. S. Bhavikatti "Finite Element Analysis"	1 st Edition, New Age International Publishers	81-224-1589-X		

CMR Institute of Technology,	SHE		
Department: Mechanical Eng	CMR INSTITUTE OF TECHNOLOGY		
Semester: 06	Sections: A & B		
Mechatronics & Microprocess	or	10ME65	Lectures/week: 05
Course Instructor: Mr. Venka	tesh Naik		
Course duration: 18 Jan, 201	.6 – 21 May 2016		

Lectu	Book &	-	Portions co	verage in %
re#	Sections	Торіс	Reference	Cumulative
1-6	TB1:1.1-1.7 RB1:1.1.1-1.1.112	1) Introduction to Mechatronic Systems: Measurement and control systems, Their elements and functions, Microprocessor based controllers.	12.5	12.5
7-13	TB1:2.1-2.12 RB1:2.1-2.30	2) Review of Transducers and Sensors: Definition and classification of transducers. Definition and classification of sensors. Principle of working and applications of light sensors, proximity sensors and Hall effect sensors.	12.5	25
14-20	TB1:9.1-9.7 RB1:4.3-4.3.10	3) Electrical Actuation Systems: Electrical systems, Mechanical switches, solid-state switches, solenoids, DC & AC motors, Stepper motors and their merits and demerits.	12.5	37.5
21-22	TB1:18.1-18.6	5. a) Introduction to Microprocessors: Evolution of Microprocessor, Organization of Microprocessors (Preliminary concepts), basic concepts of Programming of microprocessors.		
23-27	TB1:18.6-18.8	5.b) Review of concepts - Boolean algebra, Logic Gates and Gate Networks, Binary & Decimal number systems, memory representation of positive and Negative integers, maximum and minimum integers. Conversion of real, numbers, floating point notation, representation of floating point numbers, accuracy and range in floating point representation, overflow and underflow, addition of floating point numbers, character representation.	12.5	50

28-34	TB1:18.6-18.8	6) Logic Function: Data word representation. Basic elements of control systems 8085A processor architecture terminology such as CPU, memory and address, ALU, assembler data registers, Fetch cycle, write cycle, state, bus, interrupts. Micro Controllers. Difference between microprocessor and micro controllers. Requirements for control and their implementation in microcontrollers. Classification of micro controllers.	12.5	62.5
35-39	TB1:19.1-19.6	7) Organization & Programming of Microprocessors: Introduction to organization of INTEL 8085-Data and Address buses, Instruction set of 8085, programming the 8085, assembly language programming.	12.5	75
40-44	TB1:19.1-19.6	8) Central Processing Unit of Microprocessors: Introduction, timing and control unit basic concepts, Instruction and data flow, system timing, examples of INTEL 8085 and INTEL 4004 register organization.	12.5	87.5
45-52	TB1:3.1-3.6 4.1-4.6	4) Signal Conditioning: Introduction to signal conditioning. The operational amplifier, Protection, Filtering, Wheatstone bridge, Digital signals, multiplexers, Data acquisition, Introduction to Digital system. Processing Pulse-modulation.	12.5	100

Syllabus forInternal Assessment Tests(IAT)*

IAT#	Syllabus
IAT1	1-19
IAT2	20-39
IAT3	40-52

^{*}Seecalendarofeventsfor the schedules of IATs.

Book Type	Code	Author & Title	Publication	on info
			Edition&Publisher	ISBN #

Text Book	TB1	Mechatronics, W.Bolton, Longman,	2nd, Pearson Publications, 2007.	978-81-317-3253-3
Text Book	TB2	Mechatronics Principles & applications, Godfrey C. Onwubolu	Elsevier. 2011	978-0-7506-6379-3
References	RB1	Mechatronics, R. K. Rajput	Third edition,	81-219-2859-1

CMR Institute of Technology, Bangalore

Department: Mechanical Engineering

Semester: 06 Section: A &B

NON-TRADITIONAL MACHINING 10ME665 Lectures/week: 05

CMR INSTITUTE OF TECHNOLOGY

Course Instructor(s): Dr. PRAKRATHI S

Course duration: January 2016 -May 2016

Lecture#	Book &	Topics		overage%
	Sections		Individual	Cumulative
1-3	TB1:1,	Introduction: History, Classification, comparison between conventional andNon-conventional machining process selection.	12.5%	12.5 %
4-11	TB1:7-38	Ultrasonic Machining (USM): Introduction, equipment, tool materials &tool size, abrasive slurry, cutting tool system design:-Effect of parameter:Effect of amplitude and frequency and vibration, Effect of abrasive graindiameter, effect of applied static load, effect of slurry, tool & work material, USM process characteristics: Material removal rate, tool wear, Accuracy, surface finish, applications, advantages & Disadvantages of USM.		25%
12-18	TB1:39-45, RB-3	Abrasive Jet Machining (AJM): Introduction, Equipment, Variables inAJM: Carrier Gas, Type of abrasive, size of abrasive grain, velocity of theabrasive jet, mean number. Abrasive particles per unit volume of the carriergas, work material, stand-off distance (SOD), nozzle design, shape of cut.Process characteristics-Material removal rate, Nozzle wear, Accuracy & surface finish. Applications, advantages & Disadvantages of AJM. Water JetMachining: Principal, Equipment, Operation, Application, Advantages and limitations of water Jet machinery		37.5%
19-25	TB1:52-79	Electrochemical Machining (ECM): Introduction, study of ECM machine, elements of ECM process: Cathode tool, Anode work piece, source of DCpower, Electrolyte, chemistry of the process, ECM Process characteristics—Material removal rate, Accuracy, surface finish, ECM Tooling: ECM toolingtechnique & example, Tool & insulation materials, Tool size Electrolyte flow arrangement, Handling of slug, Economics of ECM, Applications suchas Electrochemical turning, Electrochemical Grinding, ElectrochemicalHoning, deburring, Advantages, Limitations.	12.5%	50%
26-31	TB1:80-83	Chemical Machining (Chm): Introduction, elements of process, chemicalblanking process: Preparation of work piece, preparation of masters, masking with photo resists, etching for blanking, accuracy of chemicalblanking, applications of chemical blanking, chemical milling (contourmachining): process steps—masking, Etching, process characteristics of CHM: material removal rate, accuracy, surface finish, Hydrogenembrittlement, advantages & application of CHM.	12.5%	62.5%

32-40	TB1:84-113, RB-3	Electrical Discharge Machining (Edm): Introduction, mechanism of metalremoval, dielectric fluid, spark generator, EDM tools (electrodes) Electrodefeed control, Electrode manufacture, Electrode wear, EDM tool design, choice of machining operation, electrode material selection, under sizing andlength of electrode, machining time. Flushing; pressure flushing, suctionflushing, side flushing, pulsed flushing synchronized with electrodemovement, EDM process characteristics: metal removal rate, accuracy, surface finish, Heat Affected Zone. Machine tool selection, Application, EDM accessories / applications, electrical discharge grinding, Traveling wireEDM.	12.5%	75 %
41-45		Plasma Arc Machining (Pam): Introduction, equipment, non-thermalgeneration of plasma, selection of gas, Mechanism of metal removal, PAMparameters, process characteristics. Safety precautions, Applications, Advantages and limitations.	12.5%	87.5%
46-52	147, TB1:134-141	Laser Beam Machining (Lbm): Introduction, equipment of LBMmechanism of metal removal, LBM parameters, Process characteristics, Applications, Advantages & limitations. Electron Beam Machining (Ebm): Principles, equipment, operations, applications, advantages and limitation of EBM.		100%

Syllabus forInternal Assessment Tests(IAT)*

IAT#	Syllabus
IAT-1	Class# 01–30
IAT-2	Class# 31–52
IT	

^{*}See calendar of events for the schedules of IATs.

Dool-True	Code	Author&Title	Publicationinformation		
BookType	Code		Edition//Publisher	ISBN	
Text Book 1		Modern machining process, Pandey and Shan,	Tata McGraw Hill 2000		
Text Book 1	ТВ2	New Technology, Bhattacharya	2000		
Reference Book	RB1	Production Technology	HMT Tata McGraw Hill. 2001		
Reference Book	RB2	Modern Machining Process, Aditya	2002		
Reference Book	כטא	Non-Conventional Machining, P.K.Mishra	The Institution of Engineers (India) Test book series Narosa Publishing		

Reference Book		Metais nanubook: Macining	American Society of Metals (ASM)	
-------------------	--	---------------------------	----------------------------------	--

Note: Fromtime totime, assignments will be posted on

https://sites.google.com/a/cmrit.ac.in/prakrathi/courses