VIII Sem Lesson Plan

CMR Institute of Technology, I	All A					
Department(s): Mechanical Er	CMR INSTITUTE OF TECHNOLOGY					
Semester: 08	Section(s): A & B					
Operations Management 10ME81			Lectures/week: 05			
Course Instructor(s): Mr. Gopi.S						
Course duration: 18 Jan 2016 – 21 May 2016						

Lectur Book &		Topics	Portions	coverage %
e #	Sections		Individual	Cumulative
1-6	TB1: Pg 2 To 21	Production and operations Management: Introduction to Operation Management, Historical Development of Operation Management. Trends in Operation Management, Information and Non Manufacturing Systems Productivity, Types of Productivity factors affecting Productivity International dimensions of Productivity. The Environment of Operations. Production System decision a look Head	12.5%	12.5 %
7-12	TB2: 3.1 To 3.6	Decision Making: Introduction, Management as Science, Characteristics of Decisions Framework for decision Making, Decision Methodology. Decision support systems, Economic models. Problems on Economic models-BEA Statistical models, Probability rules and problems on Statistical models and Decision tree analysis.	12.5 %	25 %
13-18	TB1: Pg 63 To 96 TB2: 4.1 To 4.4.10	Forecasting: Opinion and Judgmental methods of forecasting. Time series methods, Components of forecasting. Simple Exponential smoothing technique, Problems, Regression and correlation methods, Problems, Application and control of Forecasts problems Forecast errors.	12.5%	37.5%

19-25	TB1: Pg 168 To 246 TB2: 5.1To 5.6	Capacity & Location Planning: Introduction to system design and capacity manufacturing and service systems Design capacity and systems capacity determinants of effective capacity Determination of capacity requirements capacity planning and types Facility location factors to be considered for selecting locations Location planning for goods and services evaluating location decisions Plant layout, objectives, need for layout decisions Product process fixed and combination layouts their merits and demerits	12.5%	50%
26-34	TB1: Pg 540 To 560 TB2: 10.1 To 10.1.3	Aggregate planning & Master Scheduling: Objectives of Aggregate Planning, Strategies of AP. Aggregate Planning methods, Policy guidelines, Problems on graphical and charting methods of AP Mathematical techniques for Planning Transportation Method for Linear Programming Problems. Master Scheduling concepts and its Objectives. Methods of Master scheduling Problems on Master Scheduling Functions of Master schedule Master Schedule formation	12.5%	62.5%
35-41	TB1: Pg 481 To 514 TB2: 9.1To 9.4.4	Inventory Management: Definition need and importance of inventory control Types of inventories, objectives of inventory control Inventory costs, requirements for effective inventory management Basic EOQ Model derivation with assumptions Problems on basic EOQ Models, Production quantity model and quantitative price discounts and problems	12.5%	75%
42-48	TB1: Pg 574 To 595 TB2: 11.1 To 11.4	Material Requirement Planning: MRP Concept Dependent and independent demand MRP Inputs and outputs Concept of tree structure problems on MRP Concept of MRP-II Concept of ERP And CRP Benefits and limitations	12.5%	87.5%

		Purchasing & Supply Chain Management: Concept of purchasing procurement and SCM		
49-54	TB1: Pg 692 To 721	Concept of tenders open closed and direct tendering process Concept of vendor development, vendor management Problems on vendor rating Concept of make/buy decisions Types of buying	12.5%	100%

Syllabus for Sessional:

Sessional #	Syllabus
T1	Class # 01 – 18
T2	Class # 19 – 41
T3	Class # 42 – 54

Book Type	Code	Author & Title	Publication info	
			Edition & Publisher	ISBN #
Text Book	TB1	Production and operations management by Wiliam. J. Stevenson	6 th Edition TaTa McGraw Hill Books	9780073661124
Text Book	TB2	Production and operations management by Pannerselvam	2 nd Edition PHI	9788120327672
Reference Book	RB1	Production and Operations Management by Verett. E. Adams, Ronald .J. Ebert	4 th Edition PHI	9780137180080
Reference Book	RB2	Production and Operations Management by Joseph .G. Monks	2 nd Edition McGraw Hill Books	9780070427204
Reference Book	RB3	Operations Management for competitive advantage by R.B Chase, N.J. Aquilino, F. Roberts Jacob	McGraw Hill Companies Inc.	0070604487

CMR Institute of Technolo	911		
Department: Mechanical Er			
Semester: 08	Sections: A & B		CMR INSTITUTE OF TECHNOLOGY
Control Engineering		10ME82	Lectures/week: 06
Course Instructor: Mr. VIN	JAY.M.N		
Course duration: 18 th , Jan	2016 - 21 st May 2016		

Lesson Plan

Lecture	Chapter Title /		Portions	coverage %
#	Reference Literature	Topics	Individual	Cumulative
01		Introduction, Concept of automatic controls		
02		Open loop and closed loop systems		
03		Concepts of feedback		
04	UNIT 1 Introduction	Requirements of an ideal control system	12.5%	12.5%
05	muoduetton	Types of controllers- Proportional controller		12.370
		Integral controller, Proportional Integral		
06		controller		
07		Proportional Integral Differential controller		
08		Transfer function models		
09	-	Models of mechanical systems		
10	-	Models of electrical circuits		
11		Models of DC and AC motors in control systems		
12		Models of DC and AC motors in control systems		
13	UNIT- 2 Mathematical	Models of thermal systems	12.5%	25%
14	Models	Models of hydraulic systems and		2070
	-	pneumatic systems Models of hydraulic systems and		
15		pneumatic systems		
16		Analogous systems: Force-voltage, Force-		
10		current		
17		Analogous systems: Force-voltage, Force-		
		current		

18		Analogous systems: Force-voltage, Force- current		
19	-	Analogous systems: Force-voltage, Force-		
		current Transfer Functions definition, function,		
20		block representation of systems elements, reduction of block diagrams		
21	-	Reduction of block diagrams		
22	UNIT - 3	Reduction of block diagrams		
23	Block Diagrams	Reduction of block diagrams	12.5%	37.5%
24	and Signal Flow	Reduction of block diagrams		57.570
25	Graphs	Signal flow graphs: Mason's gain formula		
26	-	Signal flow graphs: Mason's gain formula		
27	-	Signal flow graphs: Mason's gain formula		
28	-	Signal flow graphs: Mason's gain formula		
29		Introduction		
• •	-	First order and second order system		
30		response to step, ramp and impulse inputs		
		First order and second order system		
31		response to step, ramp and impulse inputs		
22	UNIT-4	Concepts of time constant and its		
32	Transient and	1 importance in speed of response	12.5%	50%
22	- Steady State Response Analysis	Concepts of time constant and its		
33	Response 7 marysis	importance in speed of response		
24		Concepts of time constant and its		
34		importance in speed of response		
35		System stability: Routh's-Hurwitz Criterion		
36		System stability: Routh's-Hurwitz Criterion		
37		Polar plots		
38		Polar plots		
39		Nyquist stability criterion		
40		Nyquist stability criterion		
41	UNIT - 5	Nyquist stability criterion		
42	Frequency Response Analysis	Stability analysis, Relative stability	12.5%	62.5%
		concepts, Stability analysis, Relative stability		
43		concepts,		
44	1	Gain margin and phase margin, M&N		
		circles		

45		Bode attenuation diagrams, Stability analysis using Bode plots		
46	UNIT - 6	Simplified Bode Diagrams		
47	Frequency	Stability analysis using Bode plots	12.5%	75%
48	Response Analysis	Stability analysis using Bode plots		13%
49	Using Bode Plots	Stability analysis using Bode plots		
50	-	Stability analysis using Bode plots		
51		Stability analysis using Bode plots		
52		Definition of root loci, General rules for constructing root loci		
53		Analysis using root locus plots.		
54		Analysis using root locus plots.		
55	UNIT - 7 Root Locus Plots	Analysis using root locus plots	12.5%	87.5%
56	- ROOT LOCUS PIOLS	Analysis using root locus plots		
57		Analysis using root locus plots		
58		Analysis using root locus plots		
59		Analysis using root locus plots.		
60		Series and feedback compensation,		
61		Introduction to state concepts,		
62	UNIT 8	State equation of linear continuous data system		
63	System Compensation and	State equation of linear continuous data system	10.5%	
61	State Variable	State equation of linear continuous data	12.5%	100%
64	Characteristics of	system		
65	Linear	Matrix representation of state equations,		
05	Systems	controllability and observability		
66		Matrix representation of state equations,		
	4	controllability and observability		
67		Kalman and Gilberts test		

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Syllabus
IAT-1	Class # 01 – 24
IAT-2	Class # 25 - 48
IAT-3	Class # 49 - 67

* See calendar of events for the schedules of IATs.

			Publica	tion info
Book Type	Code	Author & Title	Edition & Publisher	ISBN No.
Text Book	TB1	Modern Control Engineering by Katsuhiko Ogatta	Pearson Education, 2004	
Text Book	TB2	Control Systems Principles and Design by M.Gopal	Tata McGraw- Hill Education, 2002	0070482896, 9780070482890
Reference Book	RB1	Modern Control Systems by Richard.C.Dorf and Robert.H.Bishop	Addison Wesley,1999	
Reference Book	RB2	System dynamics & control by Eronini-Umez, Thomson	Asia pte Ltd - 2002	
Reference Book	RB3	Feedback Control System	Schaum's series. 2001	

CMR Institute of Technology, E	Me -	
Department: Mechanical Engin	CMR INSTITUTE OF TECHNOLOGY	
Semester: 08 (B.E)		
Rapid Prototyping	Lectures/week: 05	
Course Instructor: Prof.H.Mani	kandan	

Lesson Plan

Class #	Chapter Title / Reference	Торіс	-	ge of portion vered
	Literature		Reference	Cumulative
		Introduction to Rapid Prototyping		
1-3	TB-2 1.1 – 1.6	Introduction: Need for the compression in product development, history of RP systems, Survey of applications, Growth of RP industry, and classification of RP systems.	10%	10%
	I	Introduction to Stereolithography	I	I
4 – 7	TB-1 10.1-10.5	Stereo Lithography Systems: Principle, Process parameter, Process details, Data preparation, data files and machine details, Application	5%	15%
		Selective Laser Sintering		
8-10	TB-1 11.1-11.8	Type of machine, Principle of operation, process parameters, Data preparation for SLS, Applications	5%	20%
	1	Fused Deposition Modelling		1
11-14	TB-1 8.1-8.5	Principle, Process parameter, Path generation, Applications.	5%	25%
	I	Solid Ground Curing	I	1

15 - 17	TB-2 3.2	Principle of operation, Machine details, Applications	5%	30%
		Laminated Object Manufacturing		
18-20	TB-2 9.1-9.7	Principle of operation, LOM materials. Process details, application.	5%	40%
		Concept Modellers		1
21-26	TB-1 6.1-6.6, 7.1-7.4	Principle, Thermal jet printer, Sander's model market, 3-D printer. Genisys Xs printer HP system 5, object Quadra systems	10%	50%
		Rapid Tooling		
27 – 32	TB-1 16.1-16.6 TB-3 5	Indirect Rapid tooling, Silicon rubber tooling, Aluminium filled epoxy tooling, Spray metal tooling, Cast kirksite, 3Q keltool, etc. Direct Rapid Tooling Direct. AIM.	10%	60%
	<u> </u>	Rapid Tooling		I
33-38	TB-3 5	Quick cast process, Copper polyamide, Rapid Tool, DMILS, Prometal, Sand casting tooling, Laminate tooling soft Tooling vs. hard tooling.	10%	70%
		Software for RP		
39-44	TB-2 6.1-6.7	STL files, Overview of Solid view, magics, imics, magic communicator, etc. Internet based software, Collaboration tools.	15%	85%
	1	Rapid Manufacturing Process Optimization		1
45-52	J-1	Factors influencing accuracy. Data preparation errors, Part building errors, Error in finishing, influence of build orientation.	15%	100%

Syllabus for Sessionals:

Sessional #	Syllabus
T1	Class # 01 – 20
T2	Class # 21 - 32
T3	Class # 33 - 52

Book Type	Code	Author & Title	Publica	tion info	
			Edition & Publisher	ISBN #	
Text Book	TB-1	Kenneth.G.Cooper "Rapid Prototyping	First Edition	0-8247-0261-1	
		Technology: Selection and Application"	Marcel Dekker Inc.		
		Chua.C.K, Leong K.E and Lim.C.S. "	Second Edition		
Text Book	TB-2	Rapid Prototyping: Principles &	World Scientific	981-238-117-1	
		Applications"	Publishing Co.Ltd		
Text Book	TB-3	Hilton Jacobs "Rapid Tooling:	First Edition	978-0824-7878-82	
Text book	10-5	Technologies & Industrial Applications"	Marcel Dekker Inc.	576-0024-7676-62	
		S.H.Choi and S.Samavedam,			
Journal	J-1	"Modelling & Optimization of Rapid Prototyping", Computers in Industry	Elsevier	-	
		47 (2002) 39-53			

CMR Institute of Technology, Bangalore	N			
Department: Mechanical Engineering			CMR INSTITUTE OF TECHNOLOGY	
Semester: 8 th	Section(s): A & B			
Subject: AUTOMOTIVE ENGINEERING 10ME844		Lectures/week: 06		
Course Instructor(s): Mr. CYRIL				
Course duration: 21 Jan 2016 – May 2015				

LESSON PLAN

Class No.	Chapter Title / Reference	Торіс	Percentage of portion covered	
	Literature		Reference	Cumulative
1-7	TB1: 1.12, 1.13, 1.19, 1.20	Engine Components and Cooling & Lubrication Systems: Spark Ignition(SI) & Compression Ignition (CI) engines, cylinder – arrangements and their relatives merits, Liners, Piston, connecting rod, crankshaft, valves, valve actuating mechanisms, valve and port timing diagrams, Types of combustion chambers for S.I. Engine and C.I. Engines, Compression ratio, methods of a Swirl generation, choice of materials for different engine components, engine positioning, cooling requirements, methods of cooling, thermostat valves, different lubrication arrangements.	12.5	12.5
8-14	TB1: 1.14 to 1.17	Fuels, Fuel Supply Systems for SI and CI Engines: Conventional fuels, alternative fuels, normal and abnormal combustion, cetane and octane numbers, Fuel mixture requirements for SI engines, types of carburetors, C.D.& C.C. carburetors, multi point and single point fuel injection systems, fuel transfer pumps, Fuel filters, fuel injection pumps and injectors.	12.5	25
15-23	RB1: 1.2 to 1.8 RB2: 2.2 to 2.5 RB4: 5.1 to 5.4	Power Trains: General arrangement of clutch, Principle of friction clutches, Torque transmitted, Constructional details, Fluid flywheel, Single plate, multi-plate and centrifugal clutches. Gear box: Necessity for gear ratios in transmission, synchromesh gear boxes, 3, 4 and 5 speed gear boxes. Free wheeling mechanism, planetary gears systems, over drives, fluid coupling and torque converters, Epicyclic gear box, principle of automatic transmission,	12.5	37.5

		calculation of gear ratios, Numerical calculations for		
		torque transmission by clutches.		
24-31	RB1: 1.14 to 1.15 RB2: 1.6, 1.8	Drive to Wheels: Propeller shaft and universal joints, Hotchkiss and torque tube drives, differential, rear axle, different arrangements of fixing the wheels to rear axle, steering geometry, camber, king pin inclination, included angle, castor, toe in & toe out, condition for exact steering, steering gears, power steering, general arrangements of links and stub axle, over steer, under steer and neutral steer, numerical problems, types of chassis frames.	12.5	50
31-37	TB1: 1.17	Superchargers and Turbochargers: Naturally aspirated engines, Forced Induction, Types pf superchargers, Turbocharger construction and operation, Intercooler, Turbocharger lag.	12.5	62.5
38-45	TB1: 1.28, 1.29	IgnitionSystems:BatteryIgnitionsystems,magnetoIgnitionsystem,Transistorassistcontacts.ElectronicIgnition,Automatic Ignitionadvance systems.	12.5	75
46-53	RB2: 2.7, 2.10, 2.1104 TB1: 1.7 to 1.10 RB4: 4.1 to 4.11	Suspension, Springs and Brakes: Requirements, Torsion bar suspension systems, leaf spring, coil spring, independent suspension for front wheel and rear wheel. Air suspension system. Types of brakes, mechanical compressed air, vacuum and hydraulic braking systems, construction and working of master and wheel cylinder, brake shoe arrangements, Disk brakes, drum brakes, Antilock –Braking systems, purpose and operation of antilock-braking system, ABS Hydraulic Unit, Rear- wheel antilock & Numerical Problems	12.5	87.5
54-61	RB3: 3.18	Automotive Emission Control Systems: Automotive emission controls, Controlling crankcase emissions, Controlling evaporative emissions, Cleaning the exhaust gas, Controlling the air-fuel mixture, Controlling the combustion process, Exhaust gas recirculation, Treating the exhaust gas, Air-injection system, Air-aspirator system, Catalytic converter, Emission standards- Euro I, II, III and IV norms, Bharat Stage II, III norms.	12.5	100

Syllabus for Internal Assessment Test

IAT#	Syllabus
IAT1	Class # 01 – 23
IAT2	Class # 24 - 45
IAT3	Class # 46 - 61

Book Type	Code	Author & Title	Publication information	
			Edition / Publisher	ISBN #
Text Book	TB1	Automotive Mechanics	2 nd Edition, Tata Mc.Graw-Hill	978-0070494916
Text Book	RB1	Automotive Transmissions and Power Trains, William H. Crouse	2 nd edition, Webster Division, Mc.Graw-Hill Company	978-0070146372
References	RB2	Automobile engineering, Dr. Kirpal Singh, Vol. I	12 th Edition, A.K. Jain	81-8014-015-6
References	RB3	Automobile engineering, Dr. Kirpal Singh, Vol. II	12 th Edition, Standard Publishers	81-8014-177-2
References	RB4	Automotive Mechanics, Dr. N. K. Giri	7 th Edition, Khanna Publications	-