IV Sem Lesson Plan

CMR Institute of Technology, E Department(s): IS , Mechanic			
Semester: 04 ALL BRANCHES			CIVIC TECHNOLOGY
Engineering Mathematics IV 10MAT41			Lectures/week: 06
Course Instructor(s): Uma Raj			
Course duration: 18 Jan 2015			

Course outline

Class	Chapter Title / Topic Reference Literature		Percentage of portion covered		
			Reference	Cumulative	
01 -10	NUMERICAL	Numerical Solution of ordinary differential equations of first order	12.5	12.5	
	METHODS-I TB1-31.1-31.8	Numerical methods for initial value problems			
		Picard's method			
		Taylor's series method			
		Modified Euler's method	-		
		Runge-Kutta method of fourth order			
		Predictor and corrector methods Milne's Method			
		Predictor and corrector methods Adams-Bashforth)			
11-20		Numerical solution of simultaneous first order ODEs	12.5	25	
	NUMERICAL METHODS-2	Picard's Method	-		
	TB1-31.9-31.10	Problems on Picard's Method and Runge-Kutta method of fourth order			
		Runge-Kutta method of fourth order	1		
		Numerical solution of second order ODES -Picard's Method	-		

		Problems on Picards method		
		Numerical solution of		
		second order ODES Runge-Kutta method		
		Problems on Runge-Kutta method. concept on Milne's method	•	
		Tutorial class		
21-30		Introduction to Probability, Definitions	12.5	37.5
	PROBABILITY -I TB1-26.1-26.6	Probability theorems, addition theorem of probability and problems		
		Probability associated with set theory		
		Random experiments, Sample Space and events		
		Axioms of probability		
		Conditional Probability, problems		
		Multiplication Law, problems	-	
		Baye's Theorem-proof		
		Problems on Baye's Theorem		
31-40	PROBABILITY -II TB1-26.7-26.18	Random Variables(Discrete random and continuous variables)	12.5	50
		Bernoulli's theorem,-Binomial Distribution(Mean and Standard deviation of the Binomial Distribution)		
		Problems on Binomial Distribution	-	
		Poisson distribution(Mean and Standard deviation of the Poisson Distribution)		
		Continuous Probability distributions		
		Exponential distribution(Mean and Standard deviation of the Exponential Distribution and problems)		
		Normal distribution and Standard Normal distribution		
		Problems on Normal distribution and Standard Normal	-	

		distribution		
41-50	COMPLEX VARIABLES-I-	Function of a complex variable, limit, continuity, differentiability	12.5	62.5
	TB1-20.1-20.6	Cauchy-Riemann equations in Cartesian and Polar form		
		Harmonic function, orthogonal property		
		Finding the derivative of an analytic function		
		Milne-Thompson method		
		Finding the conjugate harmonic function and the analytic function		
		Properties of analytic functions		
		Harmonic Property		
		Orthogonal Property		
		Application to flow problems		
51-58		Conformal transformation	12.5	75
	COMPLEX VARIABLES-II	Bilinear transformation		
	TB1-20.7-20.14	Discussion of $w = z^2$		
		Discussion of $w = e^{z}$		
		Discussion of $w = z + a^2/z$		
		Complex line integral		
		Cauchy's theorem and integral formula		
59-66	SPECIAL	Solution of Laplace Equation in cylindrical system leading to Bessel differential equation	12.5	87.5
	FUNCTIONS TB1-16.1-16.17	Solution of Laplace Equation in Spherical system leading to Bessel differential equation		
		Properties on Bessel functions		
		Legendre's equation		
		Bessel's function and properties		
		Orthogonal Property of Bessel's function		

		Series Solution of Legendre's Differential equation		
		Rodrigue's formula-Derivation and problems		
		Problems on Rodrigue's formula		
67-75		Sampling distribution		
	SAMPLING THEORY	Testing Hypothesis		
	TB1-27.1-27.18	Standard error		
		Test for hypothesis for means		
		Limits for means	12.5	100
		Student's t distribution		
		Test of Significance of Difference between sample means	1	
		Chi square distribution		

Syllabus for Internal Assessment Tests (IAT)*

Sessional	Syllabus
T1	01-40
T2	41-66
Т3	67-75

* See calendar of events for the schedules of IATs.

Book Type	Code	Author & Title	Publication ir	nformation
			Edition & Publisher	ISBN
Text Book	TB1	B.S.Grewal, Higher Engineering Mathematics, Latest Edition, Khanna publishers	Latest edition, khanna publications	8174091955
Text Book	TB2	Erwin Kreyszig, Advanced Engineering Mathematics, Latest Edition, Willey Publication	Wiley India publishers	978812653135
References	RB1	B.V.Ramana, Higher Engineering Mathematics,.	Latest Edition, Tata Mc.Graw Hill Publications	

References	RB2	Peter V .O'Neil, Engineering Mathematics	Cengage Learning India Pvt. Ltd.Publishers	
References	RB3	Dr.D.S.C, Engineering Mathematics IV	5 th Edition 2011	978-81-7686-675-4
References	RB4	Dr.K.S.C, Engineering Mathematics IV	2011-2012	

CMR Inst	CMR Institute of Technology, Bangalore				JUS .	
Department(s): Mechanical Engineering			CMR INSTITUTE OF TECHNOLOGY			
Semeste	r: 04	Secti	on(s): 4 A & B			
Mechanical Measurement and Metrology 10ME42B			Lectures/	week: 05		
Course In	nstructor(s): Pun	eeth k	Kumar N	i		
Course d	uration: 18 Jan 2	2015 -	21 May 2015			
Class #	Chapter Title / Refe Literature	erence	Торіс		Percentage of portion covered	
					Reference	Cumulative
1-6	Unit-I Standards of measure TB1: 1.1 to 1.12, TB to 3.7 RB1 & RB2		meter, Imperial stands Wave length stan standards Line and end standar from line standard to calibration of end bars (Numerical), S phenomena	International prototype ard yard dard, subdivision of d, comparison, transfer end standard Slip gauges, Wringing 81, M-112), Numerical	12.5 %	12.5 %

7-13	Unit-II System of Limits, Fits, Tolerance and Gauging TB1: 2.1 to 2.29, TB2: 4.1 to 4.5 & 4.11 to 4.13, RB1 & RB2	Definition of tolerance, Specification in assembly Principle of inter changeability and selective assembly limits of size, Indian standards Concept of limits of size and tolerances, compound tolerances, accumulation of tolerances Definition of fits, types of fits and their designation (IS 919 -1963), geometrical tolerance Positional - tolerances, hole basis system, shaft basis of system Classification of gauges, brief concept of design of gauges (Taylor's principles), Wear allowance on gauges Types of gauges -plain plug gauge, ring Gauge, snap gauge, limit gauge and gauge materials.	12.5 %	25 %
14-20	Unit-V Measurements and measurement systems TB1: 5.1 to 5.25, RB1 & RB2	Definition, Significance of measurement Generalized measurement system, definitions and concept of accuracy, precision, Calibration, threshold, sensitivity, hysteresis, repeatability Linearity, loading effect, system response- times delay Errors in Measurements, Classification of Errors. Transducers, Transfer efficiency, Primary and Secondary transducers, electrical, Mechanical, electronic transducers, advantages of each type transducers	12.5 %	37.5%

		Mechanical systems, inherent problems		
		Electrical intermediate modifying devices		
	Unit-VI Intermediate modifying	Input circuitry, ballast, ballast circuit,		
21-26	and terminating devices TB1: 6.1 to 6.16 , TB2,	Electronic amplifiers and telemetry	12.5 %	50 %
	RB1 & RB2	Terminating devices, Mechanical, Cathode Ray Oscilloscope		
		Oscillographs, X-Y Plotters		
		Introduction to Comparator, Characteristics		
	Unit-III Comparators and Angular measurement TB1:3.1 to 3.17, TB2:5.1 to 5.8 RB1 & RB2	Classification of comparators, mechanical comparators -Johnson Mikrokator, Sigma Comparators		
		Sigma Comparators, dial indicator, Optical Comparators -principles		62.5 %
27-33		Zeiss ultra optimeter, Electric and Electronic Comparators -principles,	12.5 %	
		LVDT, Pneumatic Comparators, back pressure gauges, Solex Comparators		
		Angular measurements, Bevel Protractor, Sine Principle and. use of Sine bars, Sine center		
		Use of angle gauges, (numericals on building of angles) Clinometers.		
		Interferometer Principle of interferometery, autocollimator		
		Optical flats. Terminology of screw threads		
34-39	Unit-IV Interferometer and screw thread, gear measurement.	Measurement of major diameter, minor diameter pitch, angle	12 50/	750/
	TB1: 4.1 to 4.24, TB2: 13.1 to 13.4 RB1 & RB2	Effective diameter of screw threads by 2-wire and 3-wire methods Best size wire	12.5%	75%
		Toolmakers microscope, gear terminology		
		Use of gear tooth Vernier caliper and gear tooth micrometer		

40-45	Unit-VII Measurement of force, torque and pressure TB1:7.1 to 7.16, TB2:6.1 to 6.10 RB1 & RB2	Principle, analytical balance Platform balance, proving ring Torque measurement, Prony brake, Hydraulic dynamometer. Pressure Measurements Principle, use of elastic members, Bridgeman gauge McLeod gauge, Pirani Gauge.	12.5 %	87.5%
46-52	Unit-VIII Temperature and strain measurement TB1:8.1 to 8.31, TB2, RB1 & RB2	Resistance thermometers, thermocouple, Law of thermocouple materials used for construction Pyrometer, Optical Pyrometer Strain Measurements, Strain gauge, Preparation and mounting of strain gauges Gauge factor, methods of strain measurement	12.5 %	100%

Syllabus for Sessionals:

Sessional #	Syllabus
T1	Class # 01-18
T2	Class # 19-38
Т3	Class # 39-52

Book Type	Code	Author & Title	Publication info	
			Edition & Publisher	ISBN #
Text Book	TB1	Mechanical Measurements and Metrology , Dr. T. Chandrashekar	Edition 2013, Subhas	978-93-83214-19-8
Text Book	TB2	Engineering Metrology, R.K. Jain	Khanna Publishers	81-7409-153-X

References	RB1	Metrology & Measurement, Anand K. Bewoor & Vinay A.Kulkarni,	Tata McGraw Hill Pvt. Ltd., New-Delhi	978-0-07-014000-4
References	RB2	Engineering Metrology, I.C. Gupta	Dhanpat Rai Publications, Delhi.	-

CMR Institute of Technology, E	All.		
Department(s): Basic Sciences	CMR INSTITUTE OF TECHNOLOGY		
Semester: 06	Section(s):		
Applied Thermodynamics 1		10ME43	Lectures/week: 06
Course Instructor(s): Narendra	a N		
	- 21 May 2014		

Class #	Chapter Title / Reference			e of portion ered
	Literature		Reference	Cumulative
1-6	TB1: 3.1 to 3.14	I.C. Engine : Morse test, swinging field dynamometer, Motoring Method, Willian's line method, Heat balance Sheet, Numerical problems	13.5%	13.5 %
7-16	TB1: 4.1 to 4.15	Vapour Power Cycles: Carnot vapour power cycles, drawbacks as a reference cycle, Simple Rankine cycle, description, T- S diagram, analysis for performance, comparison of Carnot and Rankine cycles Effects of pressure and temperature on Rankine cycle performance, Actual vapour power cycles. Ideal and practical regenerative Rankine cycle, open and closed feed water heaters, Reheat Rankine cycle, Numerical problems	13.5 %	27 %
17-22	TB1: 2.1 to 2.14	Gas power cycle : Air Standard cycles, Carnot, Otto, Diesel cycles P-V and T-S diagrams, description, Dual and Stirling cycles P-V and T-S diagrams, description .Efficiencies and mean Effective pressures, Comparison of Otto, Diesel and dual cycles. Numerical problems.	11.5%	38.5%
23-30	TB2: 7.1 to 7.9	Refrigeration: Vapour compression refrigeration system Refrigerating effect, capacity, Power required units of Refrigeration. Refrigerants and their desirable properties reversed Carnot cycle reversed Brayton cycle. Vapour absorption Refrigeration system, Steam jet Refrigeration Numerical problems	11.5%	50%

31-41	TB2: 8.1 to 8.8	Psychometry: Atmospheric air and psychometric properties; Dry bulb temperature, wet bulb temperature, dew point temperature Partial pressures, specific and relative humidity and the relation between the two enthalpy and adiabatic saturation temperature. Construction and use of psychometric chart. Analysis of various processes; heating, cooling, dehumidifying and humidifying. Adiabatic mixing of moist air Summer and winter air conditioning Numerical problems	11.5%	61.5%
42-43	TB2: 6.1 to 6.8	Reciprocating Compressors: of a single stage reciprocating compressors, work input through P-V diagram and steady state steady flow analysis. Effect of clearance and volumetric efficiency. Adiabatic, isothermal and mechanical efficiencies. Multistage compressor, saving in work, optimum intermediate pressure, inter- cooling, minimum work for compression.	15.4%	77%
50-57	TB1: 3.1 to 3.9	Combustionthermodynamics:Theoretical(Stoichiometric) air and excess air for combustion of fuels Mass balance, actual combustion.Exhaust gas analysis. A./ F ratio, Energy balance for a chemical reaction enthalpy of formation, enthalpy and internal energy of combustion, Combustion efficiency, adiabatic flow temperature Numerical problems	11.5%	88.5%
58-62	TB1: 5.1 to 5.9	Gas turbine and Jet propulsion: Classification of Gas turbines Analysis of open cycle gas turbine cycle, Advantages and disadvantages of closed cycle. Methods to improve thermal efficiency Numerical problems	11.5%	100%

Syllabus for Sessionals :

Sessional #	Syllabus
T1	Class # 01 – 17
T2	Class # 15 – 35
Т3	Class # 27 – 50

Book Type	Code	Author & Title	Publication info	
			Edition & Publisher	ISBN #
Text Book		Basic and applied Thermodynamics	P.K. Nag, 2nd Ed.,Tata McGraw Hill Pub.Co,2002	
Text Book		Applied Thermodynamics	Rajput, Laxmi Publication	

Text Book	Applied Thermodynamics	B.K. Venkanna, Swati B. Wadavadagi, PHI, New Delhi, 2010
References	Thermodynamics , An engineering approach	Yunus, A. Cengel and Michael A.Boies, 6th Ed., Tata McGraw Hill pub. Co., 2002
References	Fundamental of Classical Thermodynamics,	G.J. Van Wylen and R.E. Sontang Wiley eastern.

CMR Institute of Technology, E	1112		
Department: Mechanical Engin			
Semester: 04 Section(s): A & B		CMR INSTITUTE OF TECHNOLOGY	
Kinematics of Machines		10ME44	Lectures/week: 06
Course Instructor(s): Mrs. Sm	ruti Rekha Swain		
Course duration: 18 Jan 2016	-21 May 2016		

Lesson Plan

#	Chapter Title/	Topic Covered	Percentage of	portion covered	
Class	Reference		Reference	Cumulative	
	Literature				
	UNIT – 1	Introduction to KOM, Basic Definitions, Grubler's Criterion,			
	TB1:1.1 to	Kinematic Chain, Mechanism Chain Structure, Mobility of			
1-7	1.13,	Mechanism, Inversion, Machine, Inversion of Four Bar Chain,	12.5%	12.5%	
	1.16 to 1.17	Inversion of Single Slider Crank Chain, Inversion of Double Slider,	12.370	12.370	
	TB2 : 1.1 to	Crank Chain, Numericals.			
	1.12				
	UNIT – 2	Quick Return-Drag Link Mechanism, Withworth Mechanism, Crank			
8-13	TB1:1.11,1.16, 6.1 to 6.2, 6.5	and Slotted lever mechanism, Peaucellier's Mechanism, Robert's Mechanism, Geneva Wheel Mechanism, Rachet and Pawl,	12.5%	25%	
8-15	TB2: 3.2 to 3.4,	Mechanism, Toggle Mechanism, Pantograph, Ackerman Steering		- • •	
	3.7.2	Gear Mechanism, Numericals.			
	UNIT – 8	Introduction, Types of Cams and Followers, Definitions,			
	TB1: 7.1 to	Displacement, Velociy and acceleration time curves for Cam			
		Profiles, Disc Cam with Reciprocating Follower having knife edge,			
	7.10	Roller and Flat face Follower, Disc Cam with oscillating roller	10.5%	25.50	
14-19	TB2: 7.1 to	follower, Follower motions including SHM, Uniform Velocity,	12.5%	37.5%	
14-19	7.14	Acceleration and Retardation and Cycloidal Motion, Numericals.			
	UNIT – 6	Gear Terminology and its Classification, Law of Gearing, Velocity			
	TB1: 10.1 to	of Sliding, Forms of Teeth, Cycloidal Profile Teeth, Involute Profile			
	10.26	Teeth, Characteristics of Involute action, Path of Contact, Arc of			
20-26	TB2: 11.1 to	Contact, Contact Ratio, Interference of Involute gears, Methods of	12.5%	50%	
	11.22	avoiding Interference, Backlash, Comparision of Involute and			
		Cycloidal teeth, Profile Modifications, Numericals.			
	UNIT – 7	Simple Gear Trains, Compound Gear Trains, Epicyclic Gear Trains,			
	TB1: 11.1 to	Velocity Ratio of Epicyclic Gear Trains by Algebraic and Tabular			
07.22	11.2,	Methods, Tooth load and Torque calculations in Epicyclic Gear			
27-33	11.4 to 11.9	Trains, Numericals.	12.5%	62.5%	
	TB2: 12.1 to		12.370	02.570	
	12.7				

	UNIT – 3	Velocity Analysis of a Four Bar Mechanism, Velocity		
	TB1: 2.1 to	Analysis of a Slider Crank Mechanism, Velocity Analysis		
	2.10,	of Simple Mechanisms, Acceleration Analysis of a Four		
24.40	3.1 to 3.6	Bar Mechanism, Acceleration Analysis of a Slider Crank		750/
34-40	TB2: 2.1 to 2.3,	Mechanism, Acceleration Analysis of Simple Mechanisms,	12.5%	75%
	2.5 to 2.6	Coriolis Component of Acceleration, Angular Velocity and		
		acceleration, Velocity of Rubbing.		
	UNIT – 4	Velocity Analysis by Instantaneous Method: Definitions,		
	TB1: 2.12 to	Kennedy's Theorem, Determination of linear velocity using		
41-46	2.16, 3.8	Instantaneous Centre Method, Determination of angular	12.5%	87.5%
	TB2: 2.4, 2.8	velocity using Instantaneous Centre Method, Klien's		
	,	Construction: Velocity Analysis of Single Slider Crank		
		Mechanism, Klien's Construction: Acceleration Analysis of		
		Single Slider Crank Mechanism, Numericals.		
	UNIT – 5	Complex Algebra for Velocity Analysis for Four Bar		
	TB1: 2.11, 3.7	Mechanism and Slider Crank Mechanism, Complex		
	TB2: 2.9	Algebra for Acceleration, Analysis for Four Bar		
		Mechanism and Slider Crank Mechanism, Numericals,		1000
47-52		Vector Algebra for Velocity Analysis for Four Bar	12.5%	100%
		Mechanism and Slider Crank Mechanism, Vector Algebra		
		for Acceleration Analysis for Four Bar Mechanism and		
		Slider Crank Mechanism, Numericals.		
		······		

Syllabus for Internal Assessment Tests (IAT)*

Sessional #	Classes	Syllabus
T1	1 – 18	33%
T2	19 – 32	30%
T3	33 - 52	37%

* See calendar of events for the schedules of IATs.

LITERATURE:

Book Type	Code	Author and Title	Publication Information	
			Edition & Publisher	ISBN #
		"Theory of	3 rd Edition 2009, Tata	
Text Book	TB1	Machines",Rattan S.S	McGraw Hill Publishing	978-0-07-014477-4
			Company, New Delhi	
		"Theory of Machines",	2 nd Edition 2006, Pearson	
Text Book	TB2	Sadhu Singh	Education(singapore)	978-81-7758-127-0
		"Theory of Machines",		
Reference book	RB1	Thomas Bevan	3 rd Edition 2011, Pearson	978-81-317-2965-6
			Education Ltd, UK.	
		"Theory of Machines &		
		Mechanisms", John J	3 rd Edition 2009, Oxford	
Reference book	RB2	Uicker JR. Gordon R.	University Press, UK.	0-19-806232-X
		Pennock, Joseph E.		
		Shingley		

Note: From time to time, assignments will be posted on

https://sites.google.com/a/cmrit.ac.in/smruti_rekha/home

CMR Institute of Technology, I Department(s): Mechanical Er			
Semester: 04 Section(s): A & B			CMR INSTITUTE OF TECHNOLOGY
Manufacturing Process II		10ME45	Lectures/week: 05
Course Instructor(s): Mr. SAG	AR M BALIGIDAD		
Course duration: 18 Jan. 2016	5 – 21 May 2016		
	Lesson Plar	1	

Lecture #	Book &	Topic <i>s</i>	Portions of	coverage %
	Sections		Individual	Cumulative
1-7	TB1: 1.1 to 1.11	Theory of Metal Cutting: Single point cutting tool nomenclature, geometry. Mechanics of Chip Formation, Types of Chips. Merchants circle diagram and analysis, Ernst Merchant's solution, shear angle relationship, problems of Merchant's analysis. Tool Wear and Tool failure, tool life. Effects of cutting parameters on tool life. Tool Failure Criteria, Taylor's Tool Life equation. Problems on tool life evaluation.	12.5%	12.5 %
8-14	TB1: 2.1 to 2.3	Cutting Tool Materials : Desired properties and types of cutting tool, materials – HSS, carbides coated carbides, ceramics. Cutting fluids. Desired, properties, types and selection. Heat generation in metal cutting, factors affecting heat generation. Heat distribution in tool and work piece and chip. Measurement of tool tip temperature.	12.5 %	25 %
15-21	TB1: 3.1 to 3.2	Turning (Lathe), Shaping and Planing Machines: Classification, constructional features of Turret and Capstan Lathe. Tool Layout, shaping Machine, Planing Machine, Driving mechanisms of lathe, shaping and planning machines, Different operations on lathe, shaping machine and planing machine. Simple problems on machining time calculations.	12.5%	37.5%
22-27	TB2: 5.1 to 4.32	Drilling machines : Classification, constructional features, drilling & related operations. Types of drill & drill bit nomenclature, drill materials. Introduction to CNC machines- Principles of operation. Axes of NC machine-Coordinate systems. Basics of Manual part programming methods.	12.5%	50%
28-33	TB2: 11.1 to 11.22	Milling machines : Classification, constructional features, milling cutters, nomenclature, milling operations, up milling and down milling concepts. Various milling operations. Indexing: Simple, compound, differential and angular indexing calculations. Simple problems on simple and compound indexing.	12.5%	62.5%

34-40	6.16	Grinding machines: Types of abrasives, Grain size, bonding process, grade and structure of grinding wheels, grinding wheel types. Classification, constructional features of grinding machines (Centerless, cylindrical and surface grinding). Selection of grinding wheel. Grinding process parameters. Dressing and truing of grinding wheels.	12.5%	75%
41-46	TB1: 3.6 to 3.8	Broaching process - Principle of broaching. Details of a broach. Types of broaching machines-constructional details. Applications. Advantages and Limitations. Finishing and other Processes Lapping and Honing operations –Principles, arrangement of set up and application. Super finishing process, polishing, buffing	12.5%	87.5%
47-52	TB2: 20.1 to 20.12	operation and application. Non-traditional machining processes: Need for nontraditional machining, Principle, equipment & operation of Laser Beam, Plasma Arc Machining, Electro Chemical Machining, Ultrasonic Machining, Abrasive Jet Machining, Water Jet Machining, Electron Beam Machining, Electron Discharge Machining and Plasma Arc Machining.	12.5%	100%

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Syllabus
IAT-1	Class # 01 – 18
IAT-2	Class # 19 – 33
IAT-3	Class # 34 – 52

* See calendar of events for the schedules of IATs.

Literature:

Dool: Trmo	Code	Author & Title	Publication infor	mation
Book Type	Code	Author & Thie	Edition // Publisher	ISB
Text Book	TB1	Dr. P C Sharma/ Manufacturing Technology II	3rd edition S Chand & Company LTD	81-219- 2846-X
Text Book	TB2	Hazara Choudary / Production Technology	Vol II Media promoters &	81.85099- 15-4
Text Book	TB3	HMT / Production Technology	Tata McGraw	0-07-096- 443-2

Note: From time to time, assignments and other related information will be posted on

https://sites.google.com/a/cmrit.ac.in/mp2/home

CMR Institute of Technology, Bangalore		N	
Department: Mechanical Engineering		CMR INSTITUTE OF TECHNOLOGY	
Semester: 04	Section(s): A & B		
Subject: Fluid Mechanics		10ME46B	Lectures/week: 06
Course Instructor(s): Mr. Joseph Sajan			
Course duration: Jan 2016 – May 2016			

LESSON PLAN

Class No.	Chapter Title / Reference	Торіс		ge of portion vered
1.00	Literature			Cumulative
1-6	Unit – 1 TB1/TB2/TB3	Properties of Fluids : Introduction, Types of fluid, Properties of fluids, viscosity, thermodynamic properties, surface tension, capillarity, vapour pressure and cavitation	12.5%	12.5%
7-14	Unit – 4 TB1/TB2/TB3	Fluid Dynamics : Introduction equation of motion, Euler's equation of motion, Bernoulli's equation from first principles and also from Euler's equation, limitations of Bernoulli's equation.	12.5%	25%
15-24	Unit – 5 TB1/TB2/TB3	Fluid Flow Measurements: Venturimeter, orificemeter, pitot-tube, vertical orifice, V-Notch and rectangular notches. Dimensional Analysis: Introduction, derived quantities, dimensions of physical quantities, dimensional homogeneity, Rayleigh's method, Buckingham p theorem, dimensionless numbers, similitude, types of similitude.	12.5%	37.5%
25-32	Unit – 6 TB1/TB2/TB3	Flow through pipes: Minor losses through pipes. Darey's and Chezy's equation for loss of head due to friction in pipes. HGL and TEL.	12.5%	50%

33-41	Unit – 2 TB1/TB2/TB3	Fluid Statistics: Fluid pressure at a point, Pascal's law, pressure variation in a static fluid, absolute, gauge, atmospheric and vacuum pressures, simple manometers and differential manometers. Total pressure and center of 		62.5%
42-47	Unit – 7 TB1/TB2/TB3	Laminar flow and viscous effects : Reyonold's number, critical Reynold's number, laminar flow through circular pipe-Hagen Poiseille's equation, laminar flow between parallel and stationary plates.	12.5%	75%
48-54	Unit – 8 TB1/TB2/TB3	Flow past immersed bodies: Drag, Lift, expression for lift and drag, boundary layer concept, displacement, momentum and energy thickness. Introduction to compressible flow: Velocity of sound in a fluid, Mach number, Mach cone, propagation of pressure waves in a compressible fluid.	12.5%	87.5%
55-60	Unit – 3 TB2/TB3/RB1	Buoyancy and Fluid Kinematics: Buoyancy, center of buoyancy, metacentre and metacentric height, conditions of equilibrium of floating and submerged bodies, determination of Metacentric height experimentally and theoretically. Kinematics: Types of fluid flow, continuity equation in 2D and 3D (Cartesian Co-ordinates only), velocity and acceleration, velocity potential function and stream function.	12.5%	100%

Syllabus for Sectionals:

Sessional No.	Syllabus
T1	Class No. 01 – 14
T2	Class No. 15 – 41

T3	Class No. 42 – 60

Book Type	Code	Author & Title	Edition & Publisher
Text Book	TB1	Fluid Mechanics, Dr. Bansal,	R.K.Lakshmi Publications, 2004
Text Book	TB2	Fluid Mechanics (SI Units), Yunus A. Cengel John M. Cimbala	2 nd Ed., Tata McGraw Hill, 2006
Text Book	TB3	Fluid Mechanics and Fluid Power Engineering, Kumar D.S	Kataria and Sons, 2004
Reference Book	RB1	Fluid Mechanics, John F Douglas, Janul and M. Gasiosek	5 th edition 2006, Pearson Education Asia