

Session wise - Course Plan

Department of Electronics and Communication

2nd sem Name of Faculty **SEMESTER** CHETAN H Date of Commencement **SECTIONS VLSI** 1/2/2016 Date of Closing 10/05/2016 Subject **AMVLSI** Subject Code Class Strength 14EVE21 23 No of Hrs/Week 5 **Total Hours** 53

Sessi on No	Chapter no (No of hrs planed for the chapter)	Class #	Topic	Teaching Aids	Assignm ents/ Tests planned for the chapter	Topics covere d As per plan
1	1/1	First two classes	Basics of MOSFET	White Board, duster		
2	1/1			,,		
3	2/2	1-2	General considerations, MOS I/V Characteristics	,,		
4	2/2	3-4	Second order effects, MOS device models.	"		
5	3/2	5-6	CS stage with resistance load, divide connected load	,,		
6	3/2	7-11	current source load, triode load, CS stage with source degeneration, source follower, common-gate stage, cascade stage, choice of device models.	,,		
7	3/1	12-13	source follower, Common gate stage	,,		
8	4/1	14-16	Cascade stage and Difference pair	White Board, duster		

9	4/2	17-18	Noise in CS stage, C- G stage	,,	
10	4/1	19	source follower, cascade stage	,,	
11	4/1	20	differential pair.	"	
12	4/1	16-17	Basic difference pair, common mode response		
13	4/1	18-19	Differential pair with MOS loads, Gilbert cell	,,	
14	4/1	20-22	Basic current mirrors, Cascade mirrors, active current mirrors	,,	
15	5/1	20	One Stage OP-Amp,	,,	
16	5/2	21-22	Two Stage OP-Amp, Gain boosting,		
17	5/1	23-24	Common Mode Feedback, Slew rate		Assignm ent 1
18	5/1	25-27	Power Supply Rejection, Noise in Op Amps.		
19	5/2	28-29	Ring Oscillators, LC Oscillators	,,	
20	6/1	29-30	VCO, Mathematical Model of VCO	,,	
21	6/2	31-32	Simple PLL, Charge pump PLL,	,,	
22	6/1	32-35	Non-ideal effects in PLL, Delay locked loops and applications.	,,	Assignm ent 2
23	6/2	36-37	General Considerations, Supply Independent biasing	,,	
24	6/1	38-40	PTAT Current Generation, Constant Gm Biasing		
25	7/3	41-43	Sampling Switches, Switched Capacitor Amplifiers.		
26	7/1	44-46	DAC & ADC Specifications, Resistor String DAC	White Board, duster	
27	7/2	47-48	R-2R Ladder Network, Current Steering DAC	,,	
28	8/2	49	Charge Scaling DAC, Cyclic DAC	,,	

29	8/4	50-53	Pipeline DAC, Flash ADC,	,,	Assignm	
			Pipeline ADC, Integrating		ent 3	
			ADC, Successive			
			Approximation ADC.			

Signature of HOD

Session wise - Course Plan

Department of Electronics and Communication

SEMESTER2nd semName of FacultyCHETAN HSECTIONSVLSIDate of Commencement1/2/2016SubjectLOW PowerDate of Closing10/05/2016Subject Code14EVE22Class Strength23

Subject Code 14EVE22 Class Strength 23 No of Hrs/Week 5 Total Hours 65

Sessi on No	Chapter no (No of hrs planed for the chapter)	Class #	Topic	Teaching Aids	Assignm ents/ Tests planned for the chapter	Topics covere d As per plan
1	1/1	First two classes -Pre	Fundamentals of CMOS, Digital design	White Board, duster		
2	1/1	requisites		"		
3	1/2	1-2	Introduction: Need for low power VLSI chips.	"		
4	1/2	3-4	Source of power dissipation on Digital integrated circuit.	"		
5	1/2	5-6	Emerging low power approaches	"		
6	1/4	7-11	Physics of power dissipation in cmos devices. Device technology impact on low power	"		
7	2/1	12-13	Dynamic power dissipation in CMOS	"		
8	2/1	14-16	Transistor sizing & gate oxide thickness,	White Board, duster		
9	2/2	17-18	Impact of technology Scaling,	"		

10	2/1	19	Technology & Device innovation	,,		
11	3/1	20	Power estimation, Simulation Power analysis: SPICE circuit simulators,	,,		
12	3/1	16-17	Gate level logic simulation, capacitive power estimation,			
13	3/1	18-19	Static state power, gate level capacitance estimation,	,,		
14	3/1	20-22	Architecture level analysis. Data correlation analysis in DSP systems	,,		
15	3/1	20	Monte Carlo simulation	,,		
16	4/2	21-22	Probabilistic power analysis: Random logic signals			
17	4/1	23-24	Probability & frequency		Assignm ent 1	
18	4/1	25-27	Probabilistic power analysis techniques,			
19	4/2	28-29	Signal entropy	,,		
20	5/1	29-30	Low Power Design Circuit level: Power consumption in circuits.	"		
21	5/2	31-32	Flip Flops & Latches design	,,		
22	5/1	32-35	High capacitance nodes, Low power digital cells library	,,	Assignm ent 2	
23	5/2	36-37	Logic level: Gate reorganization	,,		
24	5/1	38-40	Signal gating, logic encoding			
25	5/3	41-43	State machine encoding			
26	5/1	44-46	Pre-computation logic	White Board, duster		
27	6/1	47	Low power Architecture & Systems: Power & performance management,	,,		
28	6/1	48	Switching activity reduction	,,		
29	6/1	49	Parallel architecture with voltage reduction	"	Assignm ent 3	
30	6/1	50	Flow graph transformation, 43 Low power arithmetic components			
31	6/2	51-52	Low power memory design.	White Board, duster		

32	7/2	52-53	Low power Clock Distribution: Power dissipation in clock distribution	,,		
33	7/2	53-54	Single driver Vs distributed buffers Zero skew Vs tolerable skew,	,,		
34	7/2	55-56	Chip and package co design of clock network	,,		
35	8/2	57-58	Algorithm & Architectural Level Methodologies: Introduction	White Board, duster		
36	8/2	59-60	Design flow	**		
37	8/3	61-63	Algorithmic level analysis & optimization,	,,		
38	8/2	64-65	Architectural level estimation & synthesis	,,		
39	-/-	66-69	Revision		-	-

Signature of HOD

Session wise - Course Plan

Department of Electronics and Communication

SEMESTER : II (MTECH) NAME OF THE FACULTY: Sudatta Mohanty DATE OF COMMENCEMENT : 01.02.2016 **SECTIONS** : Real Time Operating Systems DATE OF CLOSING : 15.05.2016 SUBJECT

 ${\bf SUBJECT\ CODE: 14ELD24}$ CLASS STRENGTH : 36

: 45 NO OF HRS/WK: 5 TOTAL HRS

Sessi on No	Chapter no (No of hrs planed for the chapter)	DATE	Topics planned for the session	Teaching Aids	Assignm ents/ Tests planned for the chapter	Topics covere d As per plan
1	1/1	01/02	Brief history of Real Time Systems,	Board, chalk, duster		
2	2/1	03/02	A brief history of Embedded Systems, Resource Analysis	,,		
3	3/1	04/02	Real-Time Service Utility, Scheduling Classes	,,		
4	4/1	05/02	The Cyclic Executive	,,		
5	5/1	09/02	Scheduler Concepts,	,,		
6	6/1	10/02	Preemptive Fixed Priority	"		
7	7/1	12/02	Scheduling Policies, Real- Time OS	,,		
8	8/1	13/02	Thread Safe Reentrant Functions.	Board, chalk, duster		
9	9/1	16/02	Fixed-Priority Policy,	"		
10	1/2	17/02	Rate Monotonic least upper bound	"		

11	2/2	22/02	Feasibility, Necessary and Sufficient feasibility	,,		
12	3/2	23/02	Deadline – Monotonic Policy, Dynamic priority policies.			
13	4/2	25/02	Intermediate I/O, , I/O Architecture	,,		
14	5/2	26/02	Execution efficiency, Worst-case Execution time,	"		
15	6/2	01/03	Physical hierarchy	,,		
16	1/3	02/03	Capacity and allocation, Shared Memory			
17	2/3	04/03	ECC Memory, Flash file systems.		Assignm ent 1	
18	3/3	05/03	Blocking, Deadlock and livestock			
19	4/3	09/03	Critical sections to protect shared resources,	,,		
20	5/3	10/03	priority inversion, Problems,	,,		
21	1/4	17/03	Missed Deadlines, QoS	,,		
22	2/4	18/03	Alternatives to rate monotonic policy	,,	Assignm ent 2	
23	3/4	21/03	Mixed hard and soft real-time services.	,,		
24	4/4	22/03	Firmware components			
25	5/4	24/03	RTOS system software mechanisms			
26	1/5	28/03	Software application components.	Board, chalk, duster		
27	2/5	30/03	Execptions assert, Checking return codes	,,		
28	3/5	31/03	Single-step debugging, kernel scheduler traces	,,		
29	4/5	04/04	Test access ports, Trace ports	,,	Assignm ent 3	
30	5/5	06/04	Power-On self test and diagnostics	,,		
31	6/5	07/04	External test equipment, Application-level debugging	,,		

32	7/5	12/04	Basic concepts of drill-down tuning,	,,		
33	8/5	13/04	hardware – supported profiling and tracing	,,		
34	1/6	16/04	Building performance monitoring into software,	,,	Assignm ent 4	
35	2/6	18/04	Path length,	Board, chalk, duster		
36	3/6	21/04	Path length, (contd)	,,		
37	4/6	22/04	Efficiency, and Call frequency	,,		
38	5/6	28/04	Call frequency(contd)	,,		
39	1/7	29/04	Fundamental optimizations,	,,		
40	2/7	02/05	Reliability and Availability, Similarities and differences	,,		
41	3/7	03/05	Reliability, Reliable software, Available software,	,,		
42	4/7	05/05	PIC microcontroller	,,	Assignm ent 5	
43		07/05	Revision of unit1-4			
44		10/05	Revision of unit4-8			
45		11/05	Revision of unit8-12			

Signature of HOD

Session wise - Course Plan

Department of Telecommunication

SEMESTER: IINAME OF THE FACULTY: Bhumika NarangBRANCH: TCEDATE OF COMMENCEMENT: 01.02.2016SUBJECT: SOC DesignDATE OF CLOSING: 11.5.2016

SUBJECT CODE: 14EVE255 CLASS STRENGTH: 21 NO OF HRS/WK: 5 TOTAL HRS: 56

Sessi on No	Chapter no (No of hrs planed for the chapter)	DATE	Topics planned for the session	Teaching Aids	Assignments/ Tests planned for the chapter	Topic s cover ed As per plan
1	1/1	01-02-2016	Introduction of System on Chip Design and course outline	Board, chalk, duster		promi
2	2/1	02-02-2016	Moore's Law and CMOS scaling	,,		
3	3/1	04-02-2016	Benefits of system on chip Integration in terms of Cost, Power and Performance	,,		
4	4/1	05-02-2016	Comparison on SOB, SOC, SIP	,,		
5	5/1	08-02-2016	Goals of SOC Design	,,		
6	6/1	09-02-2016	IP based Design and Design Reuse	,,		
7	7/1	10-02-2016	Revision of Unit-1	,,	Assignment- I	
8	1/2	12-02-2016	Canonical SOC Design	Board, chalk, duster		
9	2/2	15-02-2016	Water fall SOC Design flow	,,		
10	3/2	16-02-2016	Spiral SOC Design flow	,,		

11	4/2	17-02-2016	Top-down Vs Bottom-up approaches and Specification requirement	,,		
12	5/2	22-02-2016	Types of Specification	,,		
13	6/2	23-02-2016	System Design Process	,,		
14	7/2	24-02-2016	System Level Design Issues: Standard Model	,,		
15	8/2	25-02-2016	Soft IP Vs. Hard IP			
16	9/2	26-02-2016	The role of full custom design in reuse			
17	10/2	01-03-2016	Verification of SOCs			
18	11/2	02-03-2016	Integration with SOCs	,,	Assignment -II	
19	12/2	03-03-2016	Hardware and - software co design	"		
20	13/2	04-03-2016	Design for Timing Closure	,,		
21	14/2	05-03-2016	Interface and Timing Closure	,,		
22	15/2	09-03-2016	Macro Interfaces	"		
23	16/2	10-03-2016	Sub block Interfaces			
24	17/2	11-03-2016	Design for Timing Closure	Board, chalk, duster		
25	18/2	17-03-2016	Logic Design Issues	,,		
26	19/2	18-03-2016	Floor planning	,,	Assignment –III	
27	20/2	21-03-2016	Logic Design Issues	"		
28	21/2	22-03-2016	Synthesis strategy	,,		
29	22/2	23-03-2016	Timing budgets	,,		
30	23/2	24-03-2016	Hard Macros and Clock Distribution and Verification Strategy	,,		
31	24/2	28-03-2016	On Chip Buses	,,		

32	25/2	30-03-2016	System Interconnect and On Chip Buses	,,	
33	26/2	31-03-2016	Basic Interface Issues, IP to Ip interfaces	Board, chalk, duster	Assignment -IV
34	27/2	01-04-2016	On Chip Debug Structures	,,	
35	28/2	02-04-2016	Designing for Low Power Circuits, Lowering the supply voltage	,,	
36	29/2	04-04-2016	Reduction of capacitance and switching activity	,,	
37	30/2	06-04-2016	Memory Architecture and clock distribution	,,	
38	31/2	07-04-2016	Hardware Accelerators in SOC	,,	
39	32/2	11-04-2016	Revision of Unit -2	,,	
40	33/2	12-04-2016	Introduction of MPSOCs, What, Why and How of MPSOCs	,,	
41	34/2	13-04-2016	Design Methodologies of MPSOCs	,,	
42	35/2	16-02-2016	Performance, Flexibility and Optimization Viewpoint of MPSOCs	,,	Assignmnt –V
43	1/5	18-04-2016	Revision of Unit - 5	,,	
44	2/5	20-04-2016	Embedded Memories - Cache Memories	,,	
45	3/5	21-04-2016	Flash Memories, Embedded DRAM	,,	
46	4/5	22-04-2016	Cache Coherence	,,	
47	1/3	28-04-2016	MESI Protocol and Directory based Coherence	,,	
48	2/3	29-04-2016	Revision of Unit - 3	,,	
49	3/3	30-04-2016	Interconnect Architecture of SOC: Bus Architecture and its limitations	Board, chalk, duster	
50	4/3	02-04-2016	Network on chip topologies	,,	Assignmnt –VI
51	5/3	03-04-2016	Mesh based NOC and Routing of NOC	,,	

52	6/3	05-04-2016	Packet Switching	"		
53	1/4	06-04-2016	Wormhole Routing	"		
54	2/4	07-04-2016	Revision of Unit- 4	"	Assignmnt –VII	
55	3/4	10-04-2016	Case Study: A low power open multimedia application platform for 3G wireless networks: Platform Core Architecture	IEEE Paper		
56	4/4	11-04-2016	Case Study: A low power open multimedia application platform for 3G wireless networks: Platform Software Architecture	IEEE Paper		

Signature of HOD

Session wise – Course Plan

Department of Telecommunication

SEMESTER : II NAME OF THE FACULTY : Bhumika Narang

BRANCH : TCE DATE OF COMMENCEMENT : 01.02.2016 SUBJECT : VLSI Testing and Verification DATE OF CLOSING : 11.5.2016

SUBJECT CODE: 14EVE255 CLASS STRENGTH : 21 NO OF HRS/WK: 5 TOTAL HRS: : 56

Sessi on No	Chapter no (No of hrs planed for the chapter)	DATE	Topics planned for the session	Teaching Aids	Assignments/ Tests planned for the chapter	Topic s cover ed As per plan
1	1/1	01-02-2016	Introduction to VLSI Testing and Verification & Testing Philosophy	Board, chalk, duster		
2	2/1	03-02-2016	Role of Testing & Digital and Analog VLSI Testing	"		
3	3/1	03-02-2016	VLSI technology trends affecting testing and Faults in Digital Circuits	"		
4	4/1	05-02-2016	Failures and Faults & Modeling of Faults	,,		
5	5/1	08-02-2016	Delay Faults and Temporary Faults	,,		
6	6/1	09-02-2016	Revision of Unit – 1	,,		
7	1/2	11-02-2016	Fault Diagnosis of Digital circuits and Test generation techniques for combinational circuits and One Dimensional Path Sensitization	,,	Assignment- I	
8	2/2	11-02-2016	Boolean Difference	Board, chalk, duster		

9	3/2	13-02-2016	D – Algorithm	,,		
10	4/2	15-02-2016	Path Oriented Decision Making (PODEM), FAN & Delay fault detection	"		
11	5/2	16-02-2016	Detection of multiple faults in combinational logic circuits & Revision of Unit 2	"		
12	6/2	18-02-2016	Controllability and Observability & Ad Hoc Design rules for improving Testability	,,		
13	7/2	18-02-2016	Design of Diagnosable Sequential circuits	,,		
14	1/3	23-02-2016	Scan Path Technique for testable sequential circuit design	"		
15	2/3	24-02-2016	Level- Sensitive Scan Design and Random Access Scan Technique			
16	3/3	25-02-2016	Partial Scan and Testable Sequential circuits design using non scan techniques			
17	4/3	29-02-2016	Cross Check & Boundary Scan			
18	5/3	29-02-2016	BIST : Test pattern generation for BIST : Exhaustive Testing	"	Assignment -II	
19	6/3	02-03-2016	Pseudo Exhaustive Pattern Generation	"		
20	7/3	03-03-2016	Pseudo Random Pattern Generator and Deterministic Testing	"		
21	8/3	04-03-2016	Output Response Analysis : Transition Count & Syndrome Checking	"		
22	9/3	08-03-2016	Output Response Analysis : Signature Analysis, Circular BIST	"		
23	10/3	08-03-2016	BIST Architecture : BILBO & STUMPS			
24	11/3	10-03-2016	BIST Architecture : LOCST			
25	12/3	11-03-2016	Revision of Unit 3			
26	13/3	17-03-2016	What is Verification, What is a Test Bench and the importance of verification			

27	14/3	19-03-2016	Paganyarganga Madal &			
21	14/3	19-03-2010	Reconvergence Model & Formal Verification			
28	15/3	19-03-2016	Equivalence Checking, Model			
20	13/3	19-03-2010	Checking and Functional			
			Verification			
29	16/3	22-03-2016	Revision of Unit – 5			
2)	10/5	22 03 2010	Revision of Cint			
30	17/3	23-03-2016	Verification Tools: Linting		Assignment –III	
			Tools and its limitations			
31	1/5	24-03-2016	Linting Verilog source code and			
			Linting VHDL source code			
32	2/5	29-03-2016	Linting open vera and e-source	Board,		
			code	chalk,		
				duster		
33	3/5	29-03-2016	Code Reviews and Simulators:	,,		
			Stimulus and Response, Event			
			based and Cycle based			
			simulations			
34	4/5	31-03-2016	Co- Simulators and Verification	,,		
			Intellectual Property: Hardware			
			Modelers			
35	5/5	01-04-2016	Waveform Viewers and Code	,,		
			Coverage			
36	1/6	02-04-2016	Revision of Unit – 6	,,	Assignment -IV	
37	2/6	05-04-2016	The Role of the Verification			
3,	_, 0	02 01 2010	Plan and Defining First Time	,,		
			Success			
38	3/6	05-04-2016	Levels of Verification : Unit	,,		
			Level Verification & Reusable			
			Components Verification			
39	4/6	07-04-2016	ASIC and FPGA verification	,,		
40	5/6	11-04-2016	System Level and Board Level	,,		
			Verification, Verification			
			Strategies and Verifying the			
			response			
41	6/6	12-04-2016	Revision of Unit - 7	Board,		
				chalk,		
				duster		
42	7/6	15-04-2016	Concept of Static Timing	,,		
			Analysis, Cross talk and Noise			
1.5	0.16	450:50:	& Limitation of STA			
43	8/6	15-04-2016	Slew of a wave form and Skew	,,		
			between the signals, Min and			
			Max timing paths			

44	1/7	18-04-2016	Clock domains and Operating conditions	,,	
45	2/7	20-04-2016	Critical path analysis and Falsepaths, Timing Models	,,	
46	3/7	21-04-2016	BIST Techniques for RAM Chips	,,	
47	4/7	23-04-2016	Revision of Unit -8	,,	
48	5/7	23-04-2016	Physical Design Verification: Layout rule checks and Electrical rule checks	,,	Assignmnt –V
49	6/7	29-04-2016	Parasitic Extraction and Antenna	,,	
50	1/8	30-04-2016	Crosstalk and Noise : Crosstalk glitch analysis	,,	
51	2/8	02-04-2016	Crosstalk Delay analysis and Timing Verification	,,	
52	3/8	04-04-2016	Revision of Unit - 9	"	
53	4/8	04-04-2016	Testable Memory Design : RAM Fault Models	,,	
54	5/8	06-04-2016	Test Algorithms for RAMs: GALPAT, Walking 0s and 1s, March Test, Checkerboard Test	,,	Assignmnt –VI
55	6/8	07-04-2016	Detection of Pattern Sensitive Faults and BIST Techniques for RAM Chips	,,	
56	7/8	10-04-2016	Test Generation and BIST for Embedded RAMs Revision of Unit - 4	,,	

Signature of HOD