CMR Institute of Technology, Bangalore		110
Department: Mechanical Engineering		
Semester: 01 (M Tech)		CMR INSTITUTE OF TECHNOLOGY
APPLIED MATHEMATICS	16MDE11	Lectures/week: 06
Course Instructor: Prof. K. Meenakshi		
Course duration: Sep 2016 –Dec 2016		

Lesson Plan

Lecture	Book &	Topics	Portions	coverage %
#	Sections		Individual	Cumulative
	TB1: 1.1	Approximations and Round off errors: Significant figures,	12	12
	TB1: 1.2	Accuracy and precision, Error definitions, Round off errors and		
1 - 10	TB1: 1.3	truncation errors, Mathematical modeling and engineering problem solving. Simple mathematical model. Conservation laws		
	TB1: 1.1	of engineering		
11 - 25	RB4: 14.4.1	Roots of equations : Bracketing methods-graphical method,	22	32
	RB4: 14.4.2	Bisection method, False position method, Newton Raphson		
	RB4: 14.4.3	method, Secant method, Multiple roots, Simple fixed point iteration.		
	RB4: 14.5.1			
	RB4: 14.4.3	Roots of polynomial: Polynomials in engineering and science, Muller's method, Bairstow's method, Graeffe's root squaring		
	RB4: 14.5.2	method		
	RB4: 14.5			
	RB4:			
	TB1: 2.6			
	RB4: 14.8			
	RB4: 14.6			
	TB1: 5.4.7	Numerical differentiation and Numerical Integration	12	44
	RB6: 5.9	Newton-Cotes and Guass quadrature integration formulae,		
26.24	TB1: 5.4	Integration of equation, Romberg integration, Numerical		
20-31	TB1: 5.4.6	differentiation applied to engineering problems, High accuracy		
	RB1: 5.10	differentiation formulae		
	TB1: 5.4.6			

	TB1: 5.4.6			
32 - 50	RB4: 15.1	System of Linear Algebraic Equations And Eigen Value Problems:	28	72
	RB4: 15.2.1	Introduction, Direct methods, Cramer's Rule, Gauss Elimination		
	RR/· 15 2 3	Method, Gauss-Jordan Elimination Method, Triangularization		
	ND4. 13.2.3	method, Cholesky Method, Partition method, error Analysis for		
	RB4: 15.2.5	direct methods, Iteration Methods.		
	RB4: 15.3.3	Eigen values and Eigen Vectors: Bounds on Eigen Values, Jacobi		
	RB4: 15.2.2	method for symmetric matrices, Givens method for symmetric		
		matrices,		
	KD0. 2.3,2.9	For arbitrary matrices. Dower method, Inverse newer method		
	TB1: 6.4	for arbitrary matrices, Power method, inverse power method		
	RB1: 3.7			
	RB1: 3.8			
	RB1: 3.9			
	RB1: 3.10			
	RB4: 13.6			
	RB4: 13.6			
51 - 65	RB7: 5.1	Linear Transformation: Introduction to Linear Transformation, The	28	100
	RB7: 5.2	matrix of Linear Transformation, Linear Models in Science and Engineering		
	RB7: 6.1			
	RB7:6.2	Orthogonality and Least Squares: Inner product, length and		
	RB7:7.1	orthogonality, orthogonal sets, Orthogonal projections, The Gram- schmidt process, Least Square problems, Inner product spaces		
	RB7:7.2			
	RB7:7.3			
	RB8:8.1			
	RB8:8.2			

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Sylla
T1	1-24
T2	25-42
Т3	43-65

Book type	Code	Author and title	Publication Info	
			Edition & Publisher	ISBN #
Text Book	TB1	S.S.Sastry, Numerical Analysis for Engineers	Tata Mcgraw Hill edition	0-87692-611-1
Text Book	TB2	Steven C.Chapra, Raymond P.Canale Numerical Methods for Engineers,	Fourth edition Tata Mcgraw Hill	
References	RB1	M.K.Jain,S.R.K Iyengar, R.K.Jain Numerical methods for scientific and engg computation	New Age International Publishers	81-224-1461-3
References	RB2	Applications of numerical methods to engineering	Pervez Moin	-
References	RB3	Linear Algebra and its applications	Pearson edition David.C.Lay	
References	RB4	H.C.Saxena, Finite differences and Numerical Analysis	S.Chand, 15 th edition	81-219-0339-4
References	RB5	Srimanta Pal, Numerical methods	Oxford latest edition	10-0-19-569375- 2
References	RB6	Gerald Wheatley, applied numerical analysis	Pearson education, 6 th edition	81-7808-567-4
References	RB7	Dr.M.K.Venkataraman, Linear Algebra	National Publishing Company, I edition	
References	RB8	Kenneth Hoffman and Ray Kunze Linear Algebra	Eastern Economy edition, II edition	81-203-0270-2

CMR Institute of Technology, Bangalore		911.
Department: Mechanical Engineering		
Semester: 01 (M Tech)		CMR INSTITUTE OF TECHNOLOGY
Finite Element Method	16MDE12	Lectures/week: 06
Course Instructor: Prof. Prashant S. Hatti		
Course duration: Sep 2016 -Dec 2016		

Lesson Plan

Lecture	Book &	Topics	Portions of	coverage %
#	Sections		Individual	Cumulative
	RB 3 ·	Introduction to Finite Flement Method: Basic Steps in		
	11-15	Finite Element Method to solve mechanical engineering		
1 - 9	$\frac{1}{RR} 2 \cdot 2 1$	(Solid Eluid and Hast Transfor) problems: Eunstional	15	15
1-5	2 5	(Sond, Fluid and Heat Transfer) problems: Functional	15	15
	2.5	approach and Galerkin approach, Displacement Approach:		
		Admissible Functions, Convergence Criteria: Conforming		
		and Non Conforming elements, Co C1 and Cn Continuity		
		Elements. Basic Equations, Element Characteristic		
		Equations, Assembly Procedure, Boundary and Constraint		
		Conditions.		
	TB 1:	Solid Mechanics : One-Dimensional Finite Element		
	2022	Formulations and Analysis – Bars- uniform, varying and		
	5.0, 2.2	stepped cross section-Basic(Linear) and Higher Order		
	5.1 – 5.4	Elements Formulations for Axial, Torsional and		
10 - 28	RB 3 : 9.1, 9.3	Temperature Loads with problems. Beams- Basic (Linear)		
		Element Formulation-for uniform, varying and stepped		
		cross section- for different loading and boundary conditions	25	40
		with problems.		
		Trusses, Plane Frames and Space Frame Basic(Linear)		
		Elements Formulations for different boundary condition -		
		Axial, Bending, Torsional, and Temperature Loads with		
		problems.		
		Two Dimensional Finite Element Formulations for Solid		
20 44		Mechanics Problems: Triangular Membrane (TRIA 3,		
29 - 44	кв 1: 9.1,	TRIA 6, TRIA 10) Element, Four-Noded Quadrilateral		
	9.2	Membrane (QUAD 4, QUAD 8) Element Formulations for	25	65

		 in-plane loading with sample problems. Triangular and Quadrilateral Axi-symmetric basic and higher order Elements formulation for axi-symmetric loading only with sample problems Three Dimensional Finite Element Formulations for Solid Mechanics Problems: Finite Element Formulation of Tetrahedral Element (TET 4, TET 10), Hexahedral Element (HEXA 8, HEXA 20), for different loading conditions. Serendipity and Lagrange family Elements 		
45 - 57	RB 3 : 11.1 – 11.4	Finite Element Formulations for Structural Mechanics Problems: Basics of plates and shell theories: Classical thin plate Theory, Shear deformation Theory and Thick Plate theory. Finite Element Formulations for triangular and quadrilateral Plate elements. Finite element formulation of flat, curved, cylindrical and conical Shell elements	20	85
58 - 62	RB 3 : 12.1 – 12.5	Dynamic Analysis: Finite Element Formulation for point/lumped mass and distributed masses system, Finite Element Formulation of one dimensional dynamic analysis: bar, truss, frame and beam element. Finite Element Formulation of Two dimensional dynamic analysis: triangular membrane and axisymmetric element, quadrilatateral membrane and axisymmetric element. Evaluation of eigen values and eigen vectors applicable to bars, shaft, beams, plane and space frame.	15	100

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Sylla
IAT-1	Class # 01 – 20
IAT-2	Class # 21 – 44
IAT-3	Class # 45 - 62

Pook Type	Code	Author & Title	Publication information		
book Type	Coue	Author & The	Edition // Publisher	ISBN	
		T.R.Chandrupatla, A.D	3 rd Edition,	0-13-061591-9	
Text Book	TB1	Belegunde	PHI	0 15 001571 7	
		H.V. Lakshminarayana "Finite	Orient Blackswan	978-8-17-371476-4	
Text Book	TB2	Element Analysis"	Pvt Ltd, New Delhi	710 0 17 571170 1	
		Daryl L. Logan, "A first	Thomson Canada	0-534-55298-6	
Reference	RB1	Course in Finite Element	Limited.		
		J.N.Reddy, "An Introduction to	McGraw -Hill		
Reference	RB2	Finite Element Method"	International	978-0-07-060741-5	
			Edition.		
D. (S.S. Rao, "Finite Element Method	4th Edition,		
Reference	KB 3	in Engineering"	Elsevier	0-7056-7828-3	

CMR Institute of Technology, Bangalore		
Department: Mechanical Engineering		
Semester: 01 (M.Tech)		CMR INSTITUTE OF TECHNOLOGY
Continuum Mechanics	16CAE13	Lectures/week: 06
Course Instructor: Mr.H.Manikandan		

		Lesson Plan			
	Chapter Title /	Торіс	Percentag	e of portion	
#	Reference		covered		
	Literature		Reference	Cumulative	
		Analysis of Stress			
1-8	TB-1 Chap 1, 2, 3	Continuum concept, homogeneity, isotropy, mass density, body force, surface force Cauchy's stress principle-stress vector, State of stress at a point- stress tensor, stress tensor –stress vector relationship, Force and moment, equilibrium, stress tensor symmetry. Stress transformation laws, stress quadric of Cauchy. Principal stresses, Stress invariants, stress ellipsoid, maximum and minimum shear stress, Mohr's circle for stress, plane stress, deviator and spherical stress tensors	18%	18%	
		Deformation and Strain			
9-15	Chap 1, 2, 3	Particles and points, continuum configuration- deformation and flow concepts. Position vector, displacement vector-Lagrangian and Eulerian description, deformation gradient, displacement gradient.Deformation tensors, finite strain tensors, small deformation theory, infinitesimal strain tensors.Relative displacement- linear, rotation tensors.Transformation properties of strain tensors. Principal strains, strain invariants, cubical dilatation, spherical and deviator strain tensors, plane strain, Mohr's circle, and compatibility equations.	10%	28%	
	1	Linear Elasticity	I	1	
16-26	TB-1 Chapter 6	Generalized Hooke's law, Strain energy function, isotropy, anisotropy, elastic symmetry. Isotropic media- elastic constants. Elastostatic and Elastodynamic problems. Theorem of superposition, uniqueness of solutions, St. Venant's principle.	2%	30%	
	Two dimensional elasticity				
27-36	TB-1 Chapter 6	plane stress, plane strain, Airy's stress function. Two dimensional elastostatic problems in polar coordinates. Hyperelasticity, Hypoelasticity, linear thermo elasticity.	20%	50%	

		Plasticity		
37 - 41	RB-2 Chap-4	Basic concept and definitions, idealized plastic behavior. Yield condition- Tresca and Von-Mises criteria. Stress space-I-plane, yield surface. Post yield behavior- isotropic and kinematic hardening. Plastic stress-strain equations, plastic potential theory. Equivalent stress,	10%	60%
	Chup I	equivalent plastic strain increment. Plastic work, strain hardening hypothesis. Total deformation theory- elastoplastic problems. Elementary slip line theory for plane plastic strain		
	Γ	Viscoelasticity	Γ	T
42 - 46	TB-1 Chapter 9	Linear viscoelastic behavior. Simple viscoelastic models- generalized models, linear differential operator equation. Creep and Relaxation- creep function, relaxation function, hereditary integrals. Complex moduli and compliances. Three dimensional theoryviscoelastic stress analysis, correspondence principles	20%	80%
		Fluids		
47-52	RB-1 Chap-8	Fluid pressure, viscous stress tensor, barotropic flow. Constitutive equations-Stokesian, Newtonian fluids. Basic equation for Newtonian fluid, Nevier-Strokes- Duhum equations. Steady flow, hydrostatic, irrotational flow. Perfect fluids- Bernoulli's equation, circulation, potential flow, plane potential flow.	20%	100%
	1	Fundamental Laws of Continuum Mechanics		
53-60	RB-1 Chap-8	Conservation of mass, continuity equation. Linear momentum principle, equation of motion, equilibrium equations. Moment of momentum principle. Conservation of energy first law of thermodynamics energy equation. Equation of state, entropy, second law of thermodynamics. Clausius-Duhem inequality, dissipation function. Constitutive equations-thermo		

Syllabus for Sessionals:

Sessional #	Syllabus
T1	Class # 01 – 26
T2	Class # 27 - 41
T3	Class # 42 - 60

Book Type	Code	Author & Title	Publica	tion info
			Edition & Publisher	ISBN #

Text Book	TB1	George. Mechanics	E.	Mase,	Continuum	CRC Press, 2000	978-1-4200-8538-9
References	RB1	George E. I Continuum	Mase Mecl	, Schaum nanics	n's Outline of	McGraw-Hill, 1970.	07-040663-4
References	RB2	Dill, Ellis Ha Mechanics: Viscoelastic	rold, Elast tity	Continuu icity, Plas	ım sticity,	CRC Press , 2006.	10: 0-8493-9779-0

CMR Institute of Technology, E Department: Mechanical Engin			
Semester: 01 (M.Tech)	CMR INSTITUTE OF TECHNOLOGY		
Computer Applications in De	esign	16MDE152	Lectures/week: 06
Course Instructor: Mr.H.Manik	andan		

		Lesson Plan		<u>_</u>			
Class #	Chapter Title / Reference	Торіс	Percentag cov	e of portion vered			
	Literature		Reference	Cumulative			
	Introduction To CAD/CAM/CAE Systems						
1-10	TB-1 1.1-1.4, 2.1-2.4 RB-2 2.1-2.7	Overview, Definitions of CAD. CAM and CAE, Integrating the Design and Manufacturing Processes through a Common Database-A Scenario, Using CAD/CAM/CAE Systems for Product Development-A Practical Example. Components of CAD/CAM/CAE Systems: Hardware Components ,Vector- Refresh(Stroke-Refresh) Graphics Devices, Raster Graphics Devices, Hardware Configuration, Software Components, Windows-Based CAD Systems.	18%	18%			
		Basic Concepts of Graphics Programming					
11-16	TB-1 3.1 – 3.11 RB-2 5.1-5.8, 6.3, 13.1 – 13.10 14.1,14.2, 14.5	Graphics Libraries, Coordinate Systems, Window and Viewport, Output Primitives - Line, Polygon, Marker Text, Graphics Input, Display List, Transformation Matrix, Translation, Rotation, Mapping, Other Transformation Matrices, Hidden-Line and Hidden-Surface Removal, Back-Face Removal Algorithm, Depth-Sorting, or Painters, Algorithm, Hidden-Line Removal Algorithm, z- Buffer Method, Rendering, Shading, Ray Tracing, Graphical User Interface, X Window System.	10%	28%			
		Standards					
17-22	TB-1 14.1 – 14.4	Standards for Communicating Between Systems: Exchange Methods of Product Definition Data, Initial Graphics Exchange Specification, Drawing Interchange Format, Standard for the Exchange of Product Data. Tutorials, Computational exercises involving Geometric Modeling of components and their assemblies	2%	30%			

	Geometric Modeling Systems					
23-28	TB-1 5.5-5.6	Wireframe Modeling Systems, Surface Modeling Systems, Solid Modeling Systems, Modeling Functions, Data Structure, Euler Operators, Boolean Operations, Calculation of Volumetric Properties, Non manifold Modeling Systems, Assembly Modeling Capabilities, Basic Functions of Assembly Modeling, Browsing an Assembly, Features of Concurrent Design, Use of Assembly models, Simplification of Assemblies, Web-Based Modeling	20%	50%		
		Representation and Manipulation of Curves	6			
28 - 34	TB-1 6.1-6.4	Types of Curve Equations, Conic Sections, Circle or Circular Arc, Ellipse or Elliptic Arc, Hyperbola, Parabola, Hermite Curves, Bezier Curve, Differentiation of a Bezier Curve Equation, Evaluation of a Bezier Curve	10%	60%		
		Representation and Manipulation of Surfaces:				
35 - 45	TB-1 7.1-7.9	Types of Surface Equations, Bilinear Surface, Coon's Patch, Bicubic Patch, Bezier Surface, Evaluation of a Bezier Surface, Differentiation of a Bezier Surface, B-Spline Surface, Evaluation of a-B-Spline Surface, Differentiation of a B-Spline Surface, NURBS Surface, Interpolation Surface, Intersection of Surfaces.	20%	80%		
	Γ	CAD and CAM Integration				
46-56	TB-1 10.1-10.5	Overview of the Discrete Part Production Cycle, Process Planning, Manual Approach, Variant Approach, Generative Approach, Computer-Aided Process Planning Systems, CAM-I CAPP, MIPLAN and Multi CAPP, Met CAPP,ICEM-PART, Group Technology, Classification and Coding, Existing Coding Systems, Product Data Management (PDM) Systems.	20%	100%		

_

Syllabus for Sessionals:

Sessional #	Syllabus
T1	Class # 01 – 22
T2	Class # 23 - 34
T3	Class # 35 - 56

Book Type	Code	Author & Title	Publica	tion info
			Edition & Publisher	ISBN #
Text Book	TB1	Kunwoo Lee, "Principles of CAD/CAM/CAE systems"-	Addison Wesley, 1999	0-201-38036-6
References	RB1	Ibrahim Zeid, Mastering CAD/CAM	McGraw Hill, 1998	0-070-63434-3
References	RB2	Donald Hearn & Pauline Baker Computer Graphics C Version	2 nd Edition, Pearson India	8-177-58765-X

CMR Institute of Technology, Bangalore	110	
Department: Mechanical Engineering		
Semester: 01 (M Tech)	CMR INSTITUTE OF TECHNOLOGY	
Experimental Mechanics 16CAE16		Lectures/week: 06
Course Instructor: Prof. Prashant S. Hatti		
Course duration: Sep 2016 -Dec 2016		

Lesson Plan

Lecture	Book &	Topics	Portions of	coverage %
#	Sections		Individual	Cumulative
	TB1.	Introduction : Definition of terms calibration standards		
	2.1 - 2.12	dimension and units generalized measurement system		
1-9	3.1-3.3.	Basic concepts in dynamic measurements system response	20	20
	3.6-	distortion impedance matching experiment planning	20	20
	3 16 3 19	Analysis of E-maximum tal Data: Cause and types of		
	5.10,5.15	Analysis of Experimental Data: Cause and types of		
		experimental errors, error analysis. Statistical analysis of		
		experimental data- Probability distribution, gaussian,		
		normal distribution. Chi-square test, Method of least square,		
		correlation coefficient, multivariable regression, standard		
		deviation of mean, graphical analysis and curve fitting,		
		general consideration in data analysis.		
	TB1:	Data Acquisition and Processing: General data acquisition		
	14 -14 7	system, signal conditioning revisited, data transmission,		
	14-14.7	Analog-to-Digital and Digital-to- Analog conversion, Basic		
		components (storage and display) of data acquisition		
10 - 28	10-10 10	system. Computer program as a substitute for wired logic.	20	40
	10 10.10	Force, Torque and Strain Measurement: Mass balance	20	10
		measurement, Elastic Element for force measurement,		
		torque measurement. Strain Gages -Strain sensitivity of		
		gage metals, Gage construction, Gage sensitivity and gage		
		factor, Performance characteristics, Environmental effects		
		Strain, gage circuits, Potentiometer, Wheat Stone's bridges,		
		Constant current circuits. Strain Analysis Methods-Two		
		element and three element, rectangular and delta rosettes		
		Correction for transverse strains effects stress gage - plane		
		concertion for transverse strains enects, succes gage - plane		
		shear gage, suess mensity factor gage.		

	RB1:	Stress Analysis: Two Dimensional Photo elasticity - Nature		
20 44	11 11 0	of light, - wave theory of light,- optical interference -		
29-44	11-11.3,	Polariscopes stress optic law - effect of stressed model in		
	11.5,	plane and circular Polariscopes, Isoclinics Iso-chromatics	25	65
	1/1 2-1/1 6	fringe order determination - Fringe multiplication		
	14.2 14.0	techniques - Calibration Photoelastic model materials.		
		Separation methods shear difference method, Analytical		
		separation methods, Model to prototype scaling.		
		Three Dimensional Photo elasticity: Stress freezing		
	PR 1 · 15 _	method, General slice, Effective stresses, Stresses		
	1E 0	separation, Shear deference method, Oblique incidence		
45 - 57	13.9	method Secondary principals stresses, Scattered light photo		
		elasticity, Principals, Polari scope and stress data analyses.	15	80
			15	
		Coating Methods: a) Photoelastic Coating Method-		
58 - 62	RB2·9 1-	Birefringence coating techniques Sensitivity Reinforcing		
50 02	9.4.10.1	and thickness effects - data reduction - Stress separation		
	511,2012,	techniques Photoelastic strain gauges. b) Brittle Coatings	20	100
	10.7 - 10.8,	Method: Brittle coating technique Principles data analysis -		
	13.1-13.3.	coating materials, Coating techniques. c) Moire Technique -		
	,	Geometrical approach, Displacement approach- sensitivity		
	17.4-17.7	of Moire data data reduction, In plane and out plane Moire		
		methods, Moire photography, Moire grid production.		
		Holography: Introduction, Equation for plane waves and		
		spherical waves, Intensity, Coherence, Spherical radiator as		
		an object (record process), Hurter, Driffeld curves,		
		Reconstruction process, Holograpic interferomerty,		
		Realtime. and double exposure methods, Displacement		
		measurement, Isopachics.		

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Sylla
IAT-1	Class # 01 – 20
IAT-2	Class # 21 – 44
IAT-3	Class # 45 - 62

Book Type	Code	Author & Title	Publication information	
			Edition // Publisher	ISBN
		Holman, "Experimental	Eighth Edition,	
Text Book	TB1	Methods for Engineers" Tata	Tata, McGraw-	978-0-07-352930-1
		McGraw-Hill Companies, Inc,	Hill Companies	
		New York, 2007.		
		Dally and Riley,	Tata	
Reference	RB1	Experimental Stress	McGraw	
		Analysis	Hill,	
		Sadhu Singh, Experimental Stress	Fourth Edition,	
Reference	RB2	Analysis	Khanna publisher.	81-7409-182-3