CMR Institute of Technology, Bangalore		N/L
Semester: 08 (B E)		
Engineering Economics	10ME701	Lectures/week: 06
Course Instructor: Prof.Cyril		

		Lesson Plan		
Class	Chapter Title /	Торіс	Percentage of portion	
#	Reference		cov	vered
	Literature		Reference	Cumulative
	In	troduction to Engineering Econom	ics	
1-3	TB-2	Engineering Decision-Makers, Engineering and Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy.	10%	10%
4-6	TB-1	Engineering Economic Decision, Maze. Law of demand and supply, Law of returns, Interest and Interest factors: Interest rate, Simple interest, Compound interest, Cash - flow diagrams	5%	15%
7-9	TB-1	Personal loans and EMI Payment, Exercises and Discussion.	5%	20%
	I	Present-Worth Comparisons	I	L
10-12	TB-1	Conditions for present worth comparisons, Basic Present worth comparisons, Present- worth equivalence, Net Presentworth, Assets with unequal lives, infinite lives	5%	25%
13 - 15	TB-2	Future-worth comparison, Pay-back compare- son, Exercises, Discussions and problems.	5%	30%
	I	Equivalent Annual-Worth Comparisons	;	I
16-18	TB-2	Equivalent Annual-Worth Comparison methods, Situations for Equivalent Annual- Worth Comparisons, Consideration of asset life.	5%	35%
19-20	TB-1	Comparison of assets with equal and unequal lives, Use of shrinking fund method, Annuity contract for guaranteed income, Exercises, Problems.	10%	45%

	Rate-Of-Return Calculations And Depreciation				
21-24	TB-1	Rate of return, Minimum acceptable rate of return, IRR, IRR misconceptions, Cost of capital concepts.	10%	50%	
25-27	TB-3	Causes of Depreciation, Basic methods of computing depreciation charges, Tax concepts, corporate income tax.	10%	60%	
		Estimating and Costing			
28-30	TB-3	Components of costs such as Direct Material Costs, Direct Labor Costs, Fixed Over-Heads, Factory cost, Administrative Over-Heads, First cost, Marginal cost, Selling price, Estimation for simple components.	15%	65%	
		Financial Ratio Analysis			
31-33	TB-3	Introduction, Nature of ratio analysis, Liquidity ratios, Leverage ratios, Activity ratios, Profitability ratios, Evaluation of a firm's earning power. Comparative statements analysis. Simple numericals	15%	75%	
		Financial And Profit Planning			
34-37	TB-3	Introduction, Financial planning, Profit planning, Objectives of profit planning, Essentials of profit planning,	15%	80%	
38-42	TB-3	Budget administration, type of budgets, preparation of budgets, advantages, problems and dangers of budgeting. Introduction to Bench Marking of Manufacturing Operation	15%	85%	
	Intro	duction, Scope Of Finance, Finance Fun	ctions		
43-47	TB-3	Statements of Financial Information: Introduction, Source of financial information, Financial statements	15%	90%	
48-52	TB-3	Balance sheet, Profit and Loss account, relation between Balance sheet and Profit and Loss account. Simple Numericals	15%	100%	

Syllabus for Sessionals:

Sessional #	Syllabus
T1	Class # 01 – 20
T2	Class # 21 - 33
T3	Class # 34 - 52

Literature:

Book Type	Code	Author & Title	Edition &
			Publisher
Text Book	TB-1	Engineering Economy, Riggs J.L., 4TH ed.,	McGrawHill, 2002
Text Book	TB-2	Engineering Economy, Thuesen H.G.	PHI , 2002
Text Book	TB-3	Industrial Engineering and Management , OP Khanna	,Dhanpat Rai & Sons. 2000

CMR Institute of Technology, Bangalore			
Department: Mechanical Engineering			
Semester: 07	Section(s): A & B		
Subject: MECHANICAL VIBRATIONS		10ME72	Lectures/week: 06
Course Instructor: Dr. Vijayananda Kaup			
Course duration: 27 July 2016 – 19 Nov 2016			

LESSON PLAN

Class No.	Chapter Title / Reference	Торіс	Percentage cove	of portion red
	Literature	-	Reference	Cumulative
		Class-1: Introduction to the subject; to all the units coming under the subject. Importance of vibration in mechanical design.		
		Class-2: Types of vibrations, Definitions, Simple Harmonic Motion (S.H.M.)		
1-10: July 27	Unit – 1: Introduction	Class-3: Joining and splitting of waveforms. Numerical examples		
to	muouueuon	Class-4 & 5: Beat phenomena. More examples	10%	10%
Aug 06	TB1/RB1/RB2	Class-6: Introduction to Fourier Series decomposition of periodic waveform		
		Class 7 to 9: Solving and getting the students to solve problems.		
		Class-10: Recap of all the concepts covered in Unit-1.		
		Class-11: Methods of analysis of un-damped free vibrations of systems. Derivation of natural frequency of spring-mass system.		
11-24:	Unit – 2: Undamped (1-DOF) Free Vibrations TB1/RB1/RB2	Class-12: Springs in series and springs in parallel. Some examples. Various forms of Inertial elements present in the system		25%
to Aug 20		Class-13: Compound Pendulum. Effect of mass of spring on natural frequency of vibration	15%	
		Class-14: Effect of mass of spring on the natural frequency.		
		Class-15 to 18: Numerical examples of Types -1, 2 and 3		
		Class-19: Types of damping: Analysis with viscous damping		
25-36 Aug 21	Unit – 3: Damped free Vibrations	Class-20: Derivations for over, critical and under damped systems.		
to Sep 03	(1-DOF)	Class-21: Response of viscous damped systems for cases of under-damped systems.	15%	40%
	TB1/RB1/RB2	Class-22: Logarithmic decrement and Problems.		
		Class-23 to 28: Numerical examples		
57-66 Sep 25	Unit – 4: Forced	Class-59: Introduction, Analysis of forced vibration with constant harmonic excitation	10%	90%

to Oct 10	Vibrations (1- DOF)	Class-60: Magnification factor, rotating and reciprocating unbalances		
	TB1/RB1/RB2	Class-61: Excitation of support (relative and absolute amplitudes)		
		Class-62: Force and motion transmissibility		
		Class-63: Energy dissipated due to damping		
		Class-64, 65: Numerical examples		
		Class-29: Seismic Instruments – Vibrometers		
	TT •4 7	Class-30: Seismic Instruments – Accelerometer		
37-46	Unit – 5: Measuring Instruments and	Class-31: Frequency measuring instruments and Problems		
to Sep 14	Whirling of shafts	Class-32: Whirling of shafts with and without damping	15%	55%
	TB1/RB1/RB2	Class-33: Discussion of speeds above and below critical speeds		
		Class-34 to 38: Numerical Examples		
		Class-39: Principle modes of vibrations, Normal mode and natural frequencies of systems (without damping)		
		Class-40: Simple spring mass systems		
17.56	Unit – 6: Two DOF Systems TB1/RB1/RB2	Class-41: Masses on tightly stretched strings		
47-56 Sep 15		Class-42: Double pendulum	1.50/	6504
to		Class-43: Torsional systems	15%	65%
Sep 24		Class-44: Combined rectilinear and angular systems		
		Class-45: Geared systems and problems		
		Class-46: Undamped dynamic vibration absorber		
		Class-47,48: Numerical examples		
		Class-49: Maxwell's reciprocal theorem		
		Class-50: Influence coefficients		
	Ilnit 7.	Class-51: Rayleigh's method		
67-77	Numerical	Class-52: Dunkerley's method		
Oct 11 To	Methods for multi-DOF	Class-53: Stodola method	15%	80%
Oct 21	systems	Class-54: Holzer's method		
	TB1/RB1/RB2	Class-55: Orthogonality of principal modes		
		Class-56: Method of matrix iteration and problems		
		Class-57,58: Numerical examples.		
	Unit – 8:	r and r and r and r		
78-82 Oct 22	Modal analysis	Signal analysis, dynamic testing of machines and		
To	Monitoring	condition monitoring and diagnosis.	10%	100%
Nov 02	TB1/RB1/RB2			

SYLLABUS FOR SESSIONALS

Sessional No.	Syllabus
T1	Class No. 01 – 28
T2	Class No. 29 – 58
Т3	Class No. 58 – 65

LITERATURE

,

Book Type	Code	Author & Title	Publication info		
			Edition & Publisher	ISBN No.	
Tart Dool TD1		Machanical Vibratians S. S. Pao	Pearson Education Inc, 4 th		
Text DOOK	IDI	Wiechanical vibrations, S. S. Rao	edition, 2003.		
	RB1	Theory of Vibration with Applications,	Pearson Education Inc, 5 th		
References		W. T. Thomson, M. D. Dahleh and C.	edition, 2008.		
		Padmanabhan,			
References	RB2	Mechanical Vibrations: S. Graham Kelly,	Special Indian Edition 2007		
		Schaum's outline Series, Tata McGraw	Special Indian Edition, 2007		
		Hill,			

CMR Institute of Technology	1112		
Department: Mechanical Eng			
Semester: 07	Section: A & B		CMR INSTITUTE OF TECHNOLOGY
Hydraulics & Pneumatics		10ME73	Lectures/week: 05
Course Instructor: Mr. Venk	atesh Naik		
Course duration: 25 July 20	16 – 19 Nov 2016		

Class	Chapter Title /		Percentage of portion	
#	Reference	Торіс	covered	
	Literature		Reference	Cumulative
1.		UNIT -1: Introduction to Hydraulic Power: Definition of		
		hydraulic system		
2.		Pascal's law, Advantages , Limitations, Applications		
3.		Structure of hydraulic control system, problems on Pascal's		
	TB1:1.1 TO 1.4	law.		
4.	3.2 TO 3.5	The source of Hydraulic Power: Pumps Classification of	12 5	12 5
	5.1 to 5.10	pumps, Pumping theory of positive displacement pumps	12.5	12.5
5.	TB2:1.4	Construction and working of Gear pumps, Vane pumps, Piston		
6		Fixed and variable displacement numps. Dump performance		
0.		characteristics		
7.		Pump Selection factors, problems on pumps.		
8.		UNIT -2: Hydraulic Actuators and Motors: Classification		
		cylinder and hydraulic motors, Linear Hydraulic Actuators		
		[cylinders], single and double acting cylinder,		
9.		Mechanics of Hydraulic Cylinder Loading, mounting		
	1B1:6.1 to 6.9	arrangements, cushioning		
10.	7.1 LO 7.7	Special types of cylinders, problems on cylinders,	12.5	25
11.	11. 5.1 to 5.2	Construction and working of rotary actuators such as gear,		
		vane, piston motors,		
12.		Motor Theoretical Torque, Power and Flow Rate, Hydraulic		
		Motor Performance,		
13.		symbolic representation of hydraulic actuators ,Problems		
14.		UNIT -3: Control Components in Hydraulic Systems:		
		Classification of control valves, Directional Control Valves-		
		Symbolic representation		
15.		constructional features of poppet, Sliding spool, rotary type		
16.	TB1: 8.1 to 8.8	valves solenoid and Pilot operated DCV, shuttle valve		
17.	TB2: 3.4	Pressure control valves - types, direct operated types and pilot	12.5	37.5
	4.1 to 4.7	operated types		0710
18.		Flow Control Valves - compensated and non-compensated FCV		
19.		Needle valve, Temperature compensated, pressure		
		compensated FCV		
20.		Pressure and temperature compensated FCV, symbolic		
		representation, Problems		
21.		UNIT -b: Introduction to Pneumatic Control: Definition of		
		pheumatic system, Pheumatic system, advantages, imitations,		
22		applications,	1	
22.	TB1:1.5	Choice of working medium. Characteristic of compressed air.	12 5	EO
23.	TB1: 3.9	FRL unit.	12.5	50
24.		Pneumatic Actuators: Linear cylinder - Types, Conventional	1	
		type of cylinder- working,]	
25.		End position cushioning, seals, Mounting arrangements-		

		Applications.		
26.		Rod - Less cylinders types, working, advantages		
27.		Rotary cylinders-types construction and application.		
		Symbols.		
28.		UNIT -7: Pneumatic Control Valves: DCV such as poppet.		
		spool, suspended seat type slide valve, Pressure control valves,		
		flow control valves, types and construction,		
29.		use of memory valve. Quick exhaust valve, time delay valve.		
		shuttle valve, twin pressure valve, symbols		
30.		Simple Pneumatic Control: Direct and indirect actuation		
		pneumatic cylinders, speed control of cylinders		
31.	TB1:13.8	Supply air throttling and Exhaust air throttling and Exhaust air		
	14.5 to 14.8	throttling.	12.5	67.5
32.	16.4 to 16.5	Signal Processing Elements: Use of Logic gates - OR and AND		
01		gates in pneumatic applications. Practical Examples involving		
		the use of logic gates		
33		Pressure dependent controls- types - construction – practical		
55.		applications		
34		Time dependent controls principle Construction practical	-	
54.		annications		
35		UNIT -4: Hydraulic Circuit Design And Analysis: Control of		
55.		Single and Double - Acting Hydraulic Cylinder		
36		Regenerative circuit Pump Unloading Circuit Double Pump	-	
50.		Hydraulic System		
27		Counter balance Valve Application, Hydraulic Cylinder		
57.		Sequencing Circuits		
20	$TP1 \cdot 0 1 + 0 1 4$	Automatic culinder reginregating system Lacked Culinder	-	
50.	101.9.1 (0 9.14 11 2	Automatic cylinder Teciprocating, system, Locked Cylinder	12.5	75
	11.5	different methods		
20		Carters affecting synchronization. Hydraulic circuit for force	-	
59.		multiplication. Speed Control of Hydraulic Culinder		
40		Encod Control of Lludroulic Motors, Sofety circuit	-	
40.		Accumulators, types, construction and applications with		
		circuite		
41		LINUT E: Maintenance of Undraulia Sustame Undraulia Oila		
41.		Desirable properties		
12		Conoral type of Eluids Scaling Devices	-	
42.	TD2:12.1 to 6.4	Beservoir Sustem Filters and Strainers	12 5	07 5
43.	1B2:12.1 to	Reservoir System, Filters and Strainers	12.5	87.5
44.	12.15	Transport of Moving Parts due to solid -particle Containination	-	
45.		Pressure switches trauble sheeting	-	
46.		Pressure switches, trouble shooting		
47.		UNIT -8: Multi- Cylinder Application: Coordinated and		
		sequential motion control, Motion and control diagrams.		
		Signal elimination methods, Cascading method- principle,		
48.		Practical application examples (up to two cylinders) using		
		cascading method (using reversing valves).		
49.	TB1:12.1 to	Electro- Pheumatic Control: Principles - signal input and		
	12.15	output, pilot assisted solenoid control of directional control	12.5	100
	TB2:6.1 to 6.4	valves	-	
50.		Use of relay and contactors. Control circuitry for simple signal		
		cylinder application	4	
51.		Compressed Air: Production of compressed air- Compressors		
		Preparation of compressed air-Driers	4	
52.		Filters, Regulators, Lubricators, Distribution of compressed air		
		Piping layout.		

Literature:

Book Type	Code	Author & Title	Publicati	on info
			Edition & Publisher	ISBN #
Text Book	TB1	"Fluid power with application", Anthony Esposito,	sixth edition, Pearson Education	978-81-775-8580-3
Text Book	TB2	'Pneumatics and Hydraulics' Andrew parr	2 nd edition, jaico publishing co	978-0-7506-4419-9

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Syllabus
IAT1	1-25
IAT2	25-42
IAT3	43-52

* See calendar of events for the schedules of IATs.

CMR Institute of Technology	2112		
Department(s): Mechanical			
Semester: 07	Section(s): A & B		CMR INSTITUTE OF TECHNOLOGY
Operations Research		10ME74	Lectures/week: 06

Course Instructor(s): Mr. Gopi.S

Course duration: 25 July 2016 - 19 Nov 2016

Lectur	Book &	Topics	Portions of	coverage %
e #	Sections		Individual	Cumulative
1-4	RB2: Pg 1 To 8 1.1 To 1.6	Introduction Evolution of OR, definition of OR, scope of OR, application areas of OR, steps (phases) in OR study, characteristics and limitations of OR, models used in OR, linear programming (LP) problem-formulation and solution by graphical method.	12.5%	12.5 %
5-12	RB2: Pg 9 To 70 2.1 To 2.7.2	Solution Of Linear Programming Problems The simplex method canonical and standard form of an LP problem, slack, surplus and artificial variables, big M method and concept of duality, dual simplex method.	12.5 %	25 %
13-19	RB2: Pg 71 To 126 3.1 To 3.5.2	Transportation Problem Formulation of transportation problem, types, initial basic feasible solution using different methods, optimal solution by MODI method, degeneracy in transportation problems, application of transportation problem concept for maximization cases. Assignment Problem- formulation, types, application to maximization cases and travelling salesman problem.	12.5%	37.5%
20-26	RB2: Pg 196 To 229 6.1 To 6.5	Integer Programming Pure and mixed integer programming problems, solution of Integer programming problems- Gomory's all integer cutting plane method and mixed integer method, branch and bound method, Zero-One programming.	12.5%	50%
27-36	RB2: Pg 9 To 70 2.1 To 2.7.2	Pert-CPM Techniques Introduction, network construction - rules, Fulkerson's rule for numbering the events, AON and AOA diagrams; Critical path method to find the expected completion time of a project, floats; PERT for finding expected duration of an activity and project, determining the probability of completing a project, predicting the completion time of project; crashing of simple projects.	12.5%	62.5%

37-45	RB2: Pg 298 To 354 9.1 To 9.3	Queuing Theory Queuing systems and their characteristics, Pure- birth and Pure-death models (only equations), empirical queuing models – M/M/1 and M/M/C models and their steady state performance analysis.	12.5%	75%
46-53	RB2: Pg 424 To 470 12.1 To 12.6	Game Theory Formulation of games, types, solution of games with saddle point, graphical method of solving mixed strategy games, dominance rule for solving mixed strategy games.	12.5%	87.5%
54-62	RB2: Pg 494 To 537 14.1 To 14.4	Sequencing Basic assumptions, sequencing 'n' jobs on single machine using priority rules, sequencing using Johnson's rule-'n' jobs on 2 machines, 'n' jobs on 3 machines, 'n' jobs on 'm' machines. Sequencing 2 jobs on 'm' machines using graphical method.	12.5%	100%

Syllabus for Sessional:

Sessional #	Syllabus
T1	Class # 01 – 19
T2	Class # 20 – 45
T3	Class # 46 – 62

Literature:

Book	Code	Author & Title	Publication info		
iype			Edition & Publisher	ISBN #	
Text Book	TB1	Operations Research by P K Gupta and D S Hira	Chand Publications, New Delhi - 2007		
Text Book	TB2	Operations Research by Taha H A	Pearson Education		
Reference Book	RB1	Operations Research by A P Verma,	S K Kataria &Sons, 2008		
Reference Book	RB2	Operations Research by Paneerselvam	Prentice hall of India 2 nd edition	9788120329287	
Reference Book	RB3	Operations Research by A M Natarajan, P Balasubramani	Pearson Education, 2005		

Staff In-charge (C.I)

CMR Institute of Technology	3112			
Department(s): Mechai	nical Engineering			
Semester: 07	Section(s): A			
Non conventional energy	10ME754	Lectures/week: 05		
Course Instructor(s): Mr. Narendra N				

Course duration: 01-AUG. 2016 -NOV- 2016

Class	Chapter Title /	Торіс	Percentage of portion	
#	Reference		covered	
	Literature		Reference	Cumulative
1		Energy source, India's production and reserves of commercial energy sources.		
2		need for non-conventional energy sources, energy alternatives, solar,		
3	RB1 : 1.1 to	thermal, photovoltaic	12 50/	12 5 0/
4	1.14	Water power, wind biomass, ocean temperature difference, tidal and waves, geothermal	13.5%	13.5 %
5		Tarsands and oil shale, nuclear (Brief descriptions); advantages and disadvantages		
6		comparison (Qualitative and Quantitative).		
8		Extra-Terrestrial radiation, spectral distribution of extra terrestrial radiation.		
9	-	solar constant, solar radiation at the earth's surface, beam,		
10	-	diffuse and global radiation, solar radiation data.		
11	-	Pyrometer, shading ring pyrheliometer,	13.5 %	27 %
		sunshine recorder,		-
12	RB1 : 2.1 to 2.8	schematic diagrams and principle of working.		
13		Flux on a plane surface, latitude, declination angle,		
14		surface azimuth angle, hour angle, zenith angle,		
		solar altitude angle expression for the angle between the		
		incident beam and the normal to a plane surface		
		(No derivation) local apparent time.		
		Apparent motion of sum, day length, numerical examples.		
15		General description, collector geometry, selective surface		
		(qualitative discussion) basic energy-balance equation,		
	RB1: 4.1 to 4.10	stagnation temperature, transmissivity of the cover system,	11.5%	38.5%
	-	transmissivity absorptivity product, numerical examples.		
16		The overall loss coefficient, correlation for the top loss		
		coefficient, bottom and side loss coefficient, problems (all		
		correlations to be provided).		
17		Temperature distribution between the collector tubes, collector		
		heat removal factor, collector efficiency factor and collector		
		(all expressions to be provided)		
10		Effect of various parameters on the collector performance:		
10		collector orientation selective surface fluid inlet temperature		
		number covers dust		
21		Photosynthesis, photosynthetic oxygen production energy		
~ -		plantation.		
22	1	bio gas production from organic wastes by anaerobic		

		fermentation, description of bio-gas plants,		
23		transportation of bio-gas, problems involved with bio-gas	11.5%	50%
	RB2: 7.1 to 7.9	production,		
24		application of bio-gas, application of bio-gas in engines,		
		advantages.		
27		Properties of Hydrogen with respected to its utilization as a		
		renewable form of energy,		
28		sources of hydrogen, production of hydrogen, electrolysis of		
		water, thermal decomposition of water,	11.5%	61.5%
29	RB2: 8.1 to 8.8	thermo chemical production bio-chemical production.		
30		Gaseous, cryogenic and metal hydrides,		
31		application of hydrogen, domestic and industrial safe burning		
		of hydrogen.		
33		Tides and waves as energy suppliers and their mechanics		
34		fundamental characteristics of tidal power.		
35		tidal energy limitations		
36		Principle of working Rankine cycle OTEC power stations in		
50		the world		
37	RB2: 6.1 to 6.8	problems associated with OTEC.	15.4%	77%
38		Principle of working types of geothermal station with		
50		schematic diagram		
39		geothermal plants in the world problems associated with		
55		geothermal conversion.		
40		scope of geothermal energy		
41		Beam, diffuse and reflected radiation, expression for flux on a		
		tilted surface		
42	RB1·31 to 39	numerical examples	11 5%	88 5%
43	1011 511 10 515	Collection and storage, thermal collection devices, liquid flat	11.070	00.370
		plate collectors.		
44		solar air heaters concentrating collectors (cylindrical,		
		parabolic, paraboloid) (Quantitative analysis);		
45		sensible heat storage, latent heat storage, application of solar		
		energy water heating		
		Space heating and cooling, active and passive systems		
		power generation, refrigeration.		
		Distillation (Qualitative analysis) solar pond,		
46		principle of working, operational problems.		
47		Description, principle of working and characteristics.		
48		applications.		
49		Properties of wind availability of wind energy in India wind		
		velocity and power from wind		
50	RB1: 5.1 to 5.9	major problems associated with wind power, wind machines:	11.5%	100%
51		Types of wind machines and their characteristics horizontal		
		and vertical axis wind mills		
52	1	elementary design principles; coefficient of performance of a		
		wind mill rotor,		
	1	aerodynamic considerations of wind mill design, numerical		
	1	examples.		

Syllabus for Sessionals :

Sessional #	Syllabus
-------------	----------

T1	Class # 01 – 17
T2	Class # 15 – 35
Т3	Class # 27 – 50

Literature:

Book Type	Code	Author & Title	Publication info	
			Edition & Publisher	ISBN #
Text Book	TB1	Non-Conventional Energy Sources by <i>G.D Rai K</i> , Khanna	Khanna Publishers, 2003.	
Text Book	TB2	Renewable Energy Sources and Conversion Technology by N.K.Bansal, Manfred Kleeman & Mechael Meliss	Tata McGraw Hill, 2 nd Edition, 1996	
References	RB1	Renewable Energy Resources, John W.Twidell Anthony D. Weir El	Tata McGraw Hill, 2ndEdition, 1996	
References	RB3	B H Khan, "Non Conventional Energy sources"	<i>Weir El,</i> BG 2001.	

Course Plan

CMR Institute of Technology, Bangalore	
Department: Mechanical Engineering	
Semester: VII (B.E)	CMR INSTITUTE OF TECHNOLOGY
Experimental Stress Analysis 10ME7	51 Lectures/week: 05

Course Instructor: Prof. Divyesh Mistry

		Lesson Plan			
Class	Chapter Title /	Percentage of portion covered			
#	Reference		Reference	Cumulative	
	Literature	Торіс			
Introduction to ESA					
1-3	TB-4	Introduction: Overview of ESA, Explanation for all Techniques to find stress strain, Optical Methods	50/	50/	
	1 – 2	work as optical computers, visual Application	3%	3%	
		Photo-elasticity			
	TB-4	Nature of light, Wave theory of light - optical interference, Stress optic law – effect of stressed model			
4 – 12	4	in plane and circular polariscopes, Isoclinics & Isochromatics, Fringe			
	TB-2	order determination Fringe multiplication techniques.	10%	15%	
	11.1-11.7	Calibration photo-elastic model materials			
		Two Dimensional Photo-elastic	ity		
	TB-1				
	6.1-6.10	Separation methods: Shear difference method, Analytical			
12- 18	&	separation methods, Model to prototype scaling, Properties of 2D	10%	25%	
	TB-4	photo-elastic model materials, Materials for 2D photo-elasticity			
	4				
Three Dimensional Photo elasticity					
19-24	TB-2	Stress freezing method, Scattered light photo-elasticity, Scattered light as an interior analyzer and	150%	40%	
	14.1-14.9	polarizer, Scattered light polariscope and stress data Analyses	1 J 70	4070	

		Photoelectic (Pirofringent) Cos	ting	
25 - 32	TB-2 16.1-16.8	Birefringence coating stresses, Effects of coating thickness: Reinforcing effects, Poisson's, Stress separation techniques: Oblique incidence, Strip coatings.	5%	45%
		Electrical Resistance Strain G	ages	
33-39	TB-2 6.1-6.7 &TB-3 3	Strain sensitivity in metallic alloys, Gage construction, Adhesives and mounting techniques, Gage sensitivity and gage factor, Performance Characteristics, Environmental effects, Strain Gage circuits. Potentiometer, Wheatstone's bridges, Constant current circuits.	10%	55%
		Strain Analysis Methods		
40-46	TB-3 4,	Two element, three element rectangular and delta rosettes, Correction for transverse strain effects, Stress gage, Plane shear gage, Stress intensity factor gage	10%	65%
		Brittle Coatings		
47-52	TB-3 10.1-10.18 & TB-4 9	Coatings stresses, Crack patterns, Refrigeration techniques, Load relaxation techniques, Crack detection methods, Types of brittle coatings, Calibration of coating. Advantages and brittle coating applications.	20%	85%
		Moire Methods		
53-59	TB-2 12	Moire fringes produced by mechanical interference .Geometrical approach, isplacement field approach to Moire fringeanalysis ,Out of plane displacement asurements, Out of plane slope measurements .Applications and advantages	15%	100%

Syllabus for Sessionals:

	Sessional #	Syllabus
T1		Class # 01 – 18
T2		Class # 19 - 46
T3		Class # 47 - 59

Literature:

			Publication info	
Book Type	Code	Author & Title	Edition & Publisher	ISBN #
Text Book	TB-1	"Experimental Stress Analysis and Motion Measurement", Richard C.Dove and Paul H.Adams	Second Edition Charles E. Merrill Books.	64-12874
Text Book	TB-2	"Experimental Stress Analysis" Dr. Sadhu Singh	Khanna Publishers	81-7409-182-3
Text Book	TB-3	"Experimental Stress Analysis", Dally and Riley, McGraw Hill	Second Edition McGRAW-HILL	0-07-Y66242-8
Text Book	TB-4	"e-book on Experimental Stress Analysis" K. Ramesh	Published by IIT Madras	978-81-904235-6-4