CMR Institute of Technology, E	1110		
Department: Mechanical Engin			
Semester: 05	Section: A & B		CMR INSTITUTE OF
Management And Entrepreneurship 10AL51		Lectures/week: 05	
Course Instructor: Mr. Trishul.	M.A		
Course duration: 25 July 2016	– 19 November 2016		

# Class	Chapter Title/ Reference	Topic Covered		tage of covered
	Literature		Reference	Cumulative
		Management: Introduction, Meaning, nature		
1-9		and characteristics of Management, Scope and		
1 /		Functional areas of management, Management		10 50/
	Management as a Science, art of profession-Management &		12.5%	12.5%
	TB1: 2.1 to 2.11	Administration Roles of Management, Levels		
		of Management, and Development of		
		Management Thought early management		
		approaches Modern management approaches.		
		Planning: Nature, importance and purpose of		
	Planning	planning process Objectives, Types of plans.		
10.10		Decision making Importance of planning steps	10 50/	250/
10-19	TB1: 3.1 to 3.8	in planning & planning premises Hierarchy of	12.5%	25%
		plans.		
		Organizing And Staffing: Nature and purpose		
		of organization Principles of organization		
20- 27		Organizing & Types of organization, Departmentation		27.50/
20-27	Staffing TB1: 4.1 to 4.8	Committees, CentralizationVs Decentralization	12.5%	37.5%
	1D1. 4.1 t0 4.0	of authority and responsibility, Span of		
		Control - MBO and MBE Nature and		
		importance of staffing-Process of Selection &		
		Recruitment.		
		Directing & Controlling: Meaning and nature		
28-35		of directing Leadership styles, Motivation		
		Theories, Communication, Meaning and	12.5%	50%
	Directing &	importance - coordination, meaning and	12.370	5070
	Controlling	importance and Techniques of Co Ordination.		
	TB1 : 6.1 to 6.6	Meaning and steps in controlling, Essentials of		
	& 7.1 TO 7.4	a sound control system, Methods of		
		establishing control.		

		Entrepreneur: Meaning of Entrepreneur;		
		Evolution of the Concept; Functions of an		
		Entrepreneur, Types of Entrepreneur,		
36-42	Entrepreneur	Entrepreneur – an emerging. Class. Concept of		
	TB1: 12.1 to 12.13	Entrepreneurship ,Evolution of	12.5%	62.5%
		Entrepreneurship, Development of		
		Entrepreneurship; Stages in entrepreneurial		
		process; Role of entrepreneurs in Economic		
		Development; Entrepreneurship in India;		
		Entrepreneurship, its Barriers.		
		Small Scale Industries: Definition;		
		Characteristics; Need and rationale;		
		Objectives; Scope; role of SSI in Economic		
		Development. Advantages of SSI, Steps to		
43-48	Small Scale	start and SSI - Government policy towards	12.5%	75%
	Industries	SSI; Different Policies of SSI; Government		
		Support for SSI during 5 year plans. Impact of		
	TB1: 13.1 to 13.15	Liberalization, Privatization, Globalization on		
		SSI Effect of WTO/GATT Supporting		
		Agencies of Government for SSI, Meaning,		
		Nature of support; Objectives; Functions;		
		Types of Help; Ancillary Industry and Tiny		
		Industry.		
		including.		
		Institutional Support: Different Schemes;		
	Institutional	TECKSOK; KIADB; KSSIDC; KSIMC; DIC		
	Institutional Support	Single Window Agency; SISI; NSIC; SIDBI;	12.5%	87.5%
	TB1: 14.1 to 14.14	KSFC.		
49-56				
		Preparation Of Project: Meaning of Project;		
		Project Identification; Project Selection;		
	Preparation of	Project Report; Need and Significance of		
	project TB1: 15.1 to 15.16	Report; Contents; Formulation; Guidelines by		
57-62	101.15.1015.10	Planning Commission for Project report;		
		Network Analysis; Errors of Project Report;	12.5%	100%
		Project Appraisal. Identification of business		
		opportunities: Market Feasibility Study;		
		Technical Feasibility Study; Financial		
I		Feasibility Study & Social Feasibility Study.		

Syllabus for Internal Assessment Tests (IAT)*

Sessional #	Syllabus
T1	Class # 01 – 35
T2	Class # 36 - 56

* See calendar of events for the schedules of IATs.

LITERATURE:

Bash Tuna Cada			Publication info		
Book Type	Code	Author & Title	Edition & Publisher	ISBN #	
Text Book	TB1	NVR Naidu Management & Entrepreneurship	1 st edition, I.K.International Publishing house	978-81-906757-8-9	
Text Book	TB2	Poornima .M. Charantimath Entrepreneurship development	2 nd edition, Pearson	978-81-317-5919-6	
References	RB1	P.C.Tripathi, P.N.Reddy & Principles of management	4 th edition, Tata Mcgraw Hill	978-0-07-022088-1	
References	RB2	Stephen Robbins & Fundamentals of Management	7 th edition ,PHI	9780136007104	

CMR Institute of Technolo	911.1		
Department(s): Mechanical Engineering			
Semester: 05	Section(s): A & B		CMR INSTITUTE OF TECHNOLOGY
Computer Aided Machine Drawing 10ME52		Lectures/week: 06	
Course Instructor(s): Prof	. Rajendra Prasad Red	dy	
Course duration: 25 th July	[,] 2016 – 19 th Nov. 201	6	

Lecture#	Book&	Topics	Portions co	verage %
	Sections			
	1		Individual	Cumulati
			marviauai	ve
1-6	TB1:	1) Introduction: Elements subjected to uniaxial, biaxial	10	10
	1.1-1.6	and triaxial stresses		
7-19	TB1:	2) Design for static and Impact strength: Simple	20	30
	2.1-2.18	stresses,FOS, Combined stresses,Theories of failure,		
		Stress concentration, Impact strength, Illustrative		
		examples		
20-27	TB1:	3) Design for Fatigue strength: Types of Fatigue	12	42
	3.1-3.7	stresses, SN curve, Endurance limit, Fatigue stress		
		concentration factor,Goodman's and soderberg's		
		relationships and illustrative examples		
28-36	TB1:	5) Design of shafts: Solid and Hollow shafts subjected to	12	54
	5.1-5.12	various loads and illustrative examples		
37-49	TB1:	7) Riveted and Welded joints: Types of joints, failure	20	74
	7.1-7.19	of joints, and joint efficiency, Eccentric loading in		
		Rivetted and welded joints		
50-56	TB1:8.1-8.	8)Power Screws: Stress in power screws, efficiency, self	10	84
	10	locking, Illustrative examples		
57-60	TB1:	4) Threaded fasteners: Stresses in threaded fasteners,	8	92
	4.1-4.10	effect of initial tension, bolted joints and illustrative		
		examples		
61-64	TB1:	6) Cotter and Knuckle joints, Keys and couplings:	8	100
	6.1-6.20	Design of joints, keys and splines, illustrative examples		

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Syllabus
IAT-1	Class # 01 – 19
IAT-2	Class # 20 – 49
IAT-3	Class # 50 – 64

* See calendar of events for the schedules of IATs.

Literature:

Book Type Code Author & Title		Publication information		
		Author & The	Edition // Publisher	ISB
Text Book	TB1	JBK Das Design of Machine Elements	I st edition,2013 Sapna Book House	9788128003066
Text Book	TB2	VB Bhandari Design of Machine Elements	5 th edition, Tata McGraw-Hill	9780070681798
Reference	RB1	Hall,Halowenko Machine Design	5 th edition, Tata McGraw-Hill	9780070634589
Reference	RB2	PC Sharma, Aggarwal Machine Design	12thedition,2012 Kataria & sons	

Note: From time to time, assignments will be posted on

https://sites.google.com/a/cmrit.ac.in/b-rajendra-prasad-reddy

CMR Institute of Technology, Bangalore			
Department: Mechanical Engineering			
Semester: 05 Section(s): A and B		CMR INSTITUTE OF TECHNOLOGY	
Subject: Energy Engineering		10ME53	Lectures/week: 05
Course Instructor(s): Mr. Darshan M B			
Course duration: 01 Aug 2016 – 20 Nov 2016	5		

LESSON PLAN

Class	Chapter Title	Торіс	-	e of portion
#	/ Reference			ered
	Literature		Reference	Cumulative
1		Different Types of Fuels used for steam generation,	-	
2		Equipment for burning coal in lump form, stokers,		
	-	different types,	-	
3		Oil burners, Advantages and Disadvantages of using		
	TB2 : 1.1 to	pulverized fuel,	-	
4	1.14	Equipment for preparation and burning of pulverized	13.5%	13.5 %
	TB1:1.3, 1.7	coal, unit system and bin system.	-	
5		Pulverized fuel furnaces, cyclone furnace,		
6		Coal and ash handling,		
7		Generation of steam using forced circulation, high and		
		supercritical pressures.		
8		A Brief Account Of Benson, Velox Schmidt Steam		
9		Generators.		
	-	Chimneys: Natural, forced, induced and balanced draft		
10		Calculations and numerical involving height of chimney		
11	TB2 : 2.1 to	to produce a given draft.	13.5%	27%
11	2.8	Cooling towers and Ponds.	-	
12		Accessories for the Steam generators such as		
12		Superheaters, De-superheater,	-	
13	-	control of superheaters	-	
14		Economizers, Air preheaters and re-heaters.		
15		Hydrographs, flow duration and mass curves,	-	
16		Unit hydrograph and numericals.		
17		Storage and pondage	11.5%	39.5%
18	TB2: 4.1 to	Pumped storage plants, low, medium and high head		
10	4.10	plants,		
19		Penstock, water hammer, surge tanks, gates and		
		valves.	4	
20		General layout of hydel power plants.		
21		Tides and waves as energy suppliers and their		
		mechanics		
22		Fundamental characteristics of tidal power, harnessing		
		tidal energy, limitations.	11.5%	51%
23	TB2: 7.1 to 7.5	Principle of working, Rankine cycle, problems		
	TB1: 7.6	associated with OTEC.	4	
24	RB2:7.1 to7.5	Principle of working, types of geothermal station with		

		schematic diagram		
25		Problems associated with geothermal conversion		
26		scope of geothermal energy	-	
27		Photosynthesis, photosynthetic oxygen production,		
27		Energy plantation.		
28		Biogas production from organic wastes by anaerobic	-	
20		fermentation	11.5%	62.5%
29	TB2: 8.1 to 8.6	classification of bio gas plants		
30		factors affecting bio gas generation	-	
31		Thermo chemical conversion on bio mass,	-	
32		types of gasifiers		
33		Applications of Diesel Engines in Power field		
34		Method of starting Diesel engines	-	
35	TB2: 3.1 to 3.7	Auxiliaries like cooling and lubrication system	11.5%	74%
36		filters, centrifuges		
37		Oil heaters, intake and exhaust system	-	
38		Layout of diesel power plant.	-	
39		Solar Extra terrestrial radiation and radiation at the		
35		earth surface, radiation-measuring instruments		
40		working principles of solar flat plate collectors	-	
41		solar pond and photovoltaic conversion (Numerical	-	
		Examples).		
42	TB2: 6.1 to	Properties of wind, availability of wind energy in India,	14.5%	88.5%
	6.12	wind velocity and power from wind		
43		major problems associated with wind power		
44		wind machines; Types of wind machines and their		
		characteristics		
45		horizontal and vertical axis wind mills		
46		coefficient of performance of a wind mill rotor		
		(Numerical Examples).		
47		Principles of release of nuclear energy; Fusion and		
		fission reactions. Nuclear fuels used in the reactors.		
48		Multiplication and thermal utilization factors.]	
49		Elements of the nuclear reactor; moderator, control		
		rod, fuel rods, coolants.	11.5%	100%
50	TB2: 5.1 to 5.9	Brief description of reactors of the following types-		
		Pressurized water reactor, Boiling water reactor		
51		Sodium graphite reactor, Fast Breeder reactor,		
		Homogeneous graphite reactor and gas cooled reactor		
52		Radiation hazards, Shieldings, Radioactive waste		
		disposal		

Syllabus for Sessionals:

Sessional #	Syllabus
T1	Class # 01 – 14
T2	Class # 14 – 36
Т3	Class # 37 – 46

Literature:

Book Type	Code	Author & Title	Publication info	
			Edition&Publisher	ISBN #
Text Book	TB1	P.K.Nag, "Power Plant Engineering"	2 nd edition, TMH	
Text Book	TB2	Domkundwar, "Power Plant Engineering"	DhanpathRai sons, 2003	
References	RB1	R.K.Rajput, "Power Plant Engineering"	Laxmi Publication, New Delhi	
References	RB2	G. D. Rai, "Non Conventional Energy sources"	Khanna Publishers	
References	RB3	B H Khan, "Non Conventional Energy sources"	TMH, 2007	
References	RB4	A W Culp Jr., "Principles of Energy Conversion"	1996 <i>,</i> TMH	

CMR Institute of Technolog	3112		
Department: Mechanical Eng	ineering		
Semester: 05	Sections: A & B		CMR INSTITUTE OF TECHNOLOGY
Dynamics of Machines		10ME54	Lectures/week: 06
Course Instructor: Mr. VIN	AY.M.N		
Course duration: 25 th July 2	2016 - 19 th Nov 2016		

Lecture	Chapter Title /		Portions	coverage %
#	Reference Literature	Topics	Individual	Cumulative
01		Definitions, Types of friction and laws of friction		
02		Ratio of belt tensions, centrifugal tension and		
02		power transmitted		
03		Ratio of belt tensions, centrifugal tension and		
	UNIT 3:	power transmitted		
04	Friction and Belt	Belt drives and Flat belt drives		
05	Drives	Belt drives and Flat belt drives	12.5%	12.5%
06	TB1,TB2,EXM1	Belt drives and Flat belt drives		
07	& EXM2	Belt drives and Flat belt drives		
08		Belt drives and Flat belt drives	-	
09		Friction in pivot and collar bearings		
10		Friction in pivot and collar bearings		
11		Static and dynamic balancing		
12		Balancing of single rotating mass by balancing		
		masses in same plane and in different planes		
13		Balancing of single rotating mass by balancing		
		masses in same plane and in different planes Balancing of several rotating masses by		
14		balancing masses in same plane and in different		
- '	UNIT 4:	planes		
	Balancing of	Balancing of several rotating masses by	12.5%	25%
15	Rotating Masses	balancing masses in same plane and in different		
-	TB1,TB2,EXM1	planes		
10	& EXM2	Balancing of several rotating masses by		
16		balancing masses in same plane and in different planes		
		Balancing of several rotating masses by		
17		balancing masses in same plane and in different		ļ
		planes		
18		Balancing of several rotating masses by		
10		balancing masses in same plane and in different		

		planes		
		Balancing of several rotating masses by		
19		balancing masses in same plane and in different		
	_	planes		
20		Balancing of several rotating masses by		
20		balancing masses in same plane and in different planes		
21		Introduction, Types of governors		
21	-	Force analysis of Porter governor		
22		Force analysis of Porter governor		
23	UNIT 6:	Force analysis of Porter governor		
24	Governors	Force analysis of Porter governor	12.5%	
25	TB1,TB2,EXM1	Force analysis of Hartnell governor	12.570	37.5%
20	& EXM2	Force analysis of Hartnell governor		
27	-	Force analysis of Hartnell governor		
	-	Controlling force, Stability, Sensitiveness.		
29		Isochronism, Effort and Power		
		Vectorial representation of angular motion,		
30		Gyroscopic couple		
31		Effect of gyroscopic couple on plane disc		
32	UNIT 7:	Effect of gyroscopic couple on ship		
33	Gyroscope	Effect of gyroscopic couple on ship	12.5%	
34	TB1,TB2,EXM1	Effect of gyroscopic couple on ship	12.570	50%
35	& EXM2	Effect of gyroscopic couple on aeroplane		
36	-	Stability of two wheelers		
37	-	Stability of four wheelers		
38		Stability of four wheelers		
30		Introduction, Static equilibrium. Equilibrium of		
39		two and three force members. Members with		
		two forces and torque. Free body diagrams		
40]	Static force analysis of four bar mechanism with		
40	UNIT 1:	and without friction		
41	Static Force	Static force analysis of four bar mechanism with	17 50/	62.5%
41	Analysis TB2,EXM1 &	and without friction	12.5%	62.5%
42	EXM2	Static force analysis of slider-crank mechanism		
72		with and without friction		
43		Static force analysis of slider-crank mechanism		
	-	with and without friction		
44		Principle of virtual work		
45	UNIT 5:	Introduction, Inertia effect of crank and		
	Balancing of	connecting rod	12.5%	
46	Reciprocating	Inertia effect of crank and connecting rod	12.3/0	75%
47	Masses	Balancing in single cylinder engine,		
48	TB1,TB2,EXM1	Balancing in multi cylinder-in line engine		

	& EXM2	(primary & secondary forces)		
49		Balancing in multi cylinder-in line engine		
49		(primary & secondary forces)		
50		Balancing in V-type engine		
51		Balancing in V-type engine		
50		Balancing in Radial engine – Direct and reverse		
52		crank method		
		Balancing in Radial engine – Direct and reverse		
53		crank method		
54		Introduction		
	-	D'Alembert's principle, Inertia force, inertia		
55		torque.		
56		Dynamic force analysis of four-bar mechanism		
50		and slider crank mechanism		
57	UNIT 2:	Dynamic force analysis of four-bar mechanism		
	Dynamic Force Analysis	and slider crank mechanism	12.5%	87.5%
58	TB1,TB2,EXM1	Dynamic force analysis of four-bar mechanism		07.570
	& EXM2	and slider crank mechanism		
59	-	Dynamically equivalent systems		
60	-	Dynamically equivalent systems		
61	-	Turning moment diagrams and flywheels		
62		Fluctuation of Energy. Determination of size of		
		flywheels		
63		Analysis of Tangent cam with roller follower		
64		Analysis of Tangent cam with roller follower		
65	UNIT 8:	Analysis of Circular arc cam operating flat faced		
65	Analysis of Cams	and roller followers	12.5%	
66	TB1,TB2,EXM1	Analysis of Circular arc cam operating flat faced		100%
00	& EXM2	and roller followers.		
67		Analysis of Circular arc cam operating flat faced		
	4	and roller followers		
68		Undercutting in cam		

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Syllabus
IAT-1	Class # 01 – 20
IAT-2	Class # 21 - 44
IAT-3	Class # 45 - 68

* See calendar of events for the schedules of IATs.

Literature:

			Publica	tion info
Book Type	Code	Author & Title	Edition & Publisher	ISBN No.
Text Book	TB1	Theory of Machines Sadhu Singh	Pearson Education, 2 nd Edition, 2007	
Text Book	TB2	Theory of Machines Rattan S.S.	Tata McGraw Hill Publishing Company Ltd, 3 rd Edition, 2009	
Reference Book	RB1	Mechanism and Machine Theory A.G.Ambekar	PHI, 2007	
Reference Book	RB2	Theory of Machines & Mechanisms J.J. Uicker, G.R.Pennock, J.E. Shigley.	OXFORD 3 rd Edition, 2009	
Extra Material	EXM1	Theory of Machines R.S Khurmi	Eurasia publishing house,1 st Edition	
Extra Material	EXM2	Dynamics of Machines J.B.K Das	Sapna Book House, 3 rd Edition	

CMR Institute of Technology, B	Bangalore		
Department: Mechanical Engin	eering		
Semester: 05	Section: A		CMR INSTITUTE OF TECHNOLOGY
Manufacturing Process-III		10ME55	Lectures/week: 05

Manufacturing Process-III

Course Instructor(s): Mr. Sagar M Baligidad

Course duration:25 July 2016 – 19 Nov 2016

Lecture #		Book & Topics	Portions coverage %	
	Sections		Individual	Cumulative
1-7	TB1: 21-2.7 &3.1-3.4	Introduction And Concepts: Classification of metal working processes, characteristics of wrought products, advantages and limitations of metal working processes. Concepts of true stress, true strain, triaxial & biaxial stresses. Determination of flow stress. Principal stresses, Tresca & Von-Mises Criteria Mises yield criteria, concepts of plane stress & plane strain.	12.5%	12.5 %
8-13	TB1: 15.1- 15.12	Effects Of Parameters: Temperature, strain rate, friction and lubrication, hydrostatic pressure in metalworking, Deformation zone geometry, workability of materials, Residual stresses in wrought products.		25%
14-20	TB1:19	Drawing: Drawing equipment & dies, expression for drawing load by slab analysis, power requirement. Redundant work and its estimation, optimal cone angle & dead zone formation, drawing variables, Tube drawing, classification of tube drawing, simple problems. Cokeless cupola, cupola charge calculations,	12.5%	37.5%
21-26	TB1: 18	Extrusion: Types of extrusion processes, extrusion equipment & dies, deformation, lubrication & defects in extrusion. Extrusion dies, Extrusion of seamless tubes. Extrusion variables, simple problem	12.5%	50%
27-32	TB1:17	Rolling: Classification of Rolling processes. Types of rolling mills, Expression for Roiling load. Roll separating force. Frictional losses in bearing, power required in rolling, Effects of front & back tensions, friction, friction hill. Maximum possible reduction. Defects in rolled products. Rolling Variables, simple problems.	12.5%	62.5%
33-39	TB1:20	Sheet & Metal Forming: Forming methods dies & punches, progressive die, compound die, combination die. Rubber forming. Open back inclinable press (OBI press), piercing, blanking, bending, deep drawing, LDR in drawing, Forming limit criterion, defects of drawn products, stretch forming. Roll bending & contouring, Simple problems	12.5%	75 %
40-47	TB2:8	 High Energy Rate Forming Methods: Principles, advantages and Applications, explosive forming, electro hydraulic forming, Electromagnetic forming. Powder Metallurgy: Basic steps in Powder metallurgy brief description of methods of production of metal powders, conditioning and blending powders, compaction and sintering application of powder metallurgy components, advantages and limitations. 	12.5%	87.5%

47-52	181:10	Forging: Classification of forging processes. Forging machines & equipment. Expressions for forging pressures & load in open die forging and closed die forging by slab analysis, concepts of friction hill and factors affecting it. Die-design parameters. Material flow lines in forging. Forging defects, Residual stresses in forging. Simple problems.	12.5%	100%
-------	--------	---	-------	------

Syllabus for Internal Assessment	t Tests	(IAT)*
----------------------------------	---------	--------

IAT #	Syllabus
IAT-1	Class # 01 – 20
IAT-2	Class # 21 – 40
IAT-3	Class # 41 – 60

* See calendar of events for the schedules of IATs.

Literature:

Dool: Tring	C	Author & Title	Publication information		
Book Type	Code	Aumor & The	Edition // Publisher	ISBN	
Text Book 1	TB1	1. Mechanical metallurgy (SI units), G.E. Dieter,	Mc Graw Hill, pub.2001	0-07-100406-8	
Text Book 1	TB2	Manufacturing Process – III, Dr. K.Radhakrishna	Sapna Book House, 2009.		
Reference Book		. Materials and Frocesses in Manufacturing, L.paul,	A.K. Prentice -hall of India 2002		
Reference Book	RB2	Principles of Industrial metal working process, G.W. Rowe	CBSpub. 2002		
Reference Book	RB3	Manufacturing Science, Amitabha Ghosh & A.K. Malik	East -Westpress 2001		
Reference Book	RB4	Technology of Metal Forming Process, Surendra kumar,	PHI –2008		

Note: From time to time, assignments will be posted on

https://sites.google.com/a/cmrit.ac.in/sagarmb9033/course-offered/

https://sites.google.com/a/cmrit.ac.in/sagarmb/course-offered/

CMR Institute of Technology, Bangalore	9112				
Department: Mechanical Engineering					
Semester: 05	Section(s): A & B		CMR INSTITUTE OF TECHNOLOGY		
Subject: Turbo Machines		10ME56	Lectures/week: 06		
Course Instructor(s): Mr. Joseph Sajan					
Course duration: 25 th July to 19 th November 2016					

LESSON PLAN

Class No.	Chapter Title / Reference	Торіс		Percentage of portion covered	
	Literature		Reference	Cumulative	
1		Introduction to subject			
2		Definition of turbomachine, parts of turbomachines,			
2		Classification			
3		Comparison with positive displacement machines			
4	Unit – 1	Application of first law of thermodynamics to turbomachines			
5	TB1	Application of second law of thermodynamics to turbomachines	12%	12%	
6	IDI	Dimensionless parameters and their physical significance	-		
7		Problems	-		
8		Effect of Reynolds number; Specific speed	-		
9		Unit quantities, Model Studies	-		
10		Problems	-		
10		Euler Turbine equation, Velocity Triangles			
		Alternate form of Euler turbine equation – components of	_		
12		energy transfer;			
		Degree of reaction; velocity triangles for various degree of	_		
13		reaction			
		General analysis of a Turbo machine – effect of blade	-		
14	Unit – 3	discharge angle on energy transfer and degree of reaction;	100/		
1.7		General analysis of centrifugal pumps and compressors –	12%	24%	
15	TB1	Effect of blade discharge angle on performance;			
16		Theoretical head – capacity relationship			
17		Problems			
18		Problems			
19		Problems			
20		Problems			
21		Axial flow compressors and pumps – general expression for			
		degree of reaction;			
22		velocity triangles for different values of degree of reaction			
23		General analysis of axial and radial flow turbines –			
	Unit – 4	Utilization factor; Vane efficiency;			
24	0 mt – 4	Relation between utilization factor and degree of reaction	12%	36%	
25	TB1	condition for maximum utilization factor – optimum blade	14/0	5070	
	101	speed ratio for different types of turbines			
26		Problems			
27		Problems			
28		Problems			
29		Problems			

30		Classification, Compounding – Need for compounding,		
50		method of compounding.		
31		General Velocity Diagrams for Impulse Turbine, Blade		
		efficiency and stage efficiency		
32		Condition for maximum utilization factor/blade efficiency		
		for single stage, Problems		
33		Problems		
34	Unit – 5	Problems		
35		Condition for maximum utilization factor/blade efficiency	14%	50%
	RB2	for multi stage, Problems	/ *	
36		Problems		
37		General Velocity Diagrams for Reaction Turbine, Degree of		
		Reaction		
38		Condition for maximum efficiency for 50% Reaction		
		turbine/Parson's Turbine		
39		Problems		
40		Problems		
41		Reaction Staging		
42		Classification, Different efficiencies of Hydraulic Turbines		
43		Pelton Wheel, Work done by Pelton wheel		
44		Problems		
45		Problems		
46	Unit – 6	Reaction Turbine, Draft Tubes		
47		Work done and efficiencies of Francis Turbine	12%	62%
48	RB3	Problems		
49		Problems		
50		Kaplan Turbine, Working Proportions		
51		Problems		
52		Problems		
53		Classification and parts of centrifugal pump, different heads		
		and efficiencies of centrifugal pump		
54	Unit – 7	Minimum speed for starting the flow		
55		Cavitation	12%	74%
56	RB3	Priming, Pumps in Series and Parallel		
57		Problems		
58		Problems		
59		Centrifugal Compressors: Stage velocity triangles, slip factor		
60		power input factor, Stage work, Pressure developed		
61	Unit – 8	stage efficiency and surging and problems.		
62		Axial flow Compressors: Expression for pressure ratio	12%	86%
	TB1	developed in a stage		
63		work done factor, efficiencies and stalling		
64		Problems		
65		Static and Stagnation states- Incompressible fluids and		
		perfect gases		
66	Unit – 2	Overall isentropic efficiency, stage efficiency (their		
		comparison)	14%	100%
67	TB2	polytropic efficiency for both compression and expansion		
		processes		
68		Reheat factor for expansion process		

Syllabus for Sectionals:

Sessional No.	Syllabus
T1	Class No. 01 – 29
T2	Class No. 30 – 58
Т3	Class No. 59 – 68

Literature:

	Code	Author & Title	Publication info		
Book Type			Edition & Publisher	ISBN #	
Text Book	TB1	An introduction to energy conversion- Volume III, V. Kadambi and Manohar Prasad	New age intl. 2008	9788122431896	
Text Book	TB2	Turbines, compressors and fans, S.M. Yahya	Tata McGraw Hill, II edition, 2002	9780070707023	
Reference Book	RB1	Principles of turbo machines, D,G. Shepherd	Elsvier 2005	1856174093	
Reference Book	RB2	Thermal engineering, R.K.Rajput	Laxmi publications 2010	9788131808047	
Reference Book	RB3	Fluid mechanics and machinery, R.K.Bansal	Standard book house 2008	9789380358406	