(RQ) BLUE CHEMISTRY

1. The correct set of four quantum number for the outermost electron of sodium (Z=11) is				
a) 3,1,0, ½	b) 3,1,1, ½	c) 3,2,1, ½	d) 3,0,0, ½	
2. The pH of the solution = 4 is,	on obtained by mixing 10	00ml of a solution of pH =	=3 with 400 ml of a solution of pH	
a) 3 – log 2.8	b) 7 – log 2.8	c) 4 – log 2.8	d) 5 – log 2.8	
3. 20 ml of methane is to room temperature is		50ml of oxygen. The volu	ime of the gas left after cooling	
a) 80 ml	b) 40 ml	c) 60 ml	d) 30 ml	
4. The equilibrium constant of the reaction				
$A_{(s)} + 2 B^{+}_{(aq)} = A^{2+}_{(aq)} + 2B_{(s)}$				
$E^{0}_{cell} = 0.0295 \text{ V is}$				
[2.303RT /F = 0.059]				
a) 10	b) 2 X 10 ²	c) 3 X 10 ²	d) 2 X 10 ⁵	
5. Intermolecular hydrogen bonding is formed in				
a) H₂O	b) salicylaldehyde	c) NH ₃	d) benzophenone	
6. The rate of reaction increases with rise in temperature because of				
a) increase in number of activated molecules		b) increase in energy of activation		
c) decrease in energy of activation		d) increase in the number of effective collisions		
7. Temperature co-efficient of a reaction is '2' when temperature is increased from 30°C to 90°C , the rate of the reaction increased by				
a) 60 times	b) 64 times	c) 150 times	d) 400 times	
8. The emf of a galvanic cell constituted with the electrodes Zn^{2+} / Zn (0.76V) and Fe^{2+} / Fe (-0.41V) is				
a) -0.35 V	b) +1.17 V	c) +0.35 V	d) -1.17 V	
9. A group of atoms can function as a ligand only when				

a) it is a small molecule

- b) it has an unshared electron pair
- c) it is a negatively charged ion
- d) it is a positively charged ion

- 10. Acetone and proponal are
- a) functional isomers
- b) position isomers
- c) geometrical isomers

- d) optical isomers
- 11.

$$\begin{array}{c|cccc} OH & & & \\ \hline & C_6H_5COCI \ / \ base & X & & \underline{Nitration} & Y \ (Major \ product) \\ \hline \end{array}$$

Y is?

- $ho \longrightarrow ho \longrightarrow ho_2$
- c) O_2N —COO—
- d) O_2N — O_2 — O_2 — O_2
- 12. The compound that reacts the fastest with sodium methoxide is
- a) CI NO

b) CI

c) CI

- d) CI NO
- 13. The pair of compounds having identical shapes for their molecule is
- a) CH₄, SF₄

- b) BCl₂, CIF₃
- c) XeF₂, ZnCl₂
- d) SO₂, CO₂

- 14. lodoform reaction is answered by all except
- a) CH₃-CH(OH)-CH₂-COOH
- b)CH₃CHO
- c) CH₃-CH₂OH
- d) CH₃-CH₂-CH₂OH

- 15. C₆H₅COOH NH₃, Heat P NaOBr Q Conc. H₂SO₄, Heat to 460K R
 R is,
 a) o-bromosulphanilic acid b) Sulphanilamide c) Sulphanilic acid
- d) p-bromosulphanilamide
- 16. X Ozonolysis,(Reductive) Y + Z

Y can be obtained by Etard's reaction. Z undergoes disproportionation reaction with concentrated alkali. X could be

- 17. P CH₃MgBr, H₃O⁺ R dil NaOH, Heat 4 methyl pent-3-en-2-one
 P is
- a) Propanonne b) ethanamine c) ethanenitrile d) ethanol

18. 0.44 g of a monohydric alcohol when added to methyl magnesium iodide in ether liberates at STP, 112 cm³ of methane. With PCC the same alcohol forms a carbonyl compound that answers silver mirror test. The monohydric alcohol is

- a) $CH_3CH(OH)CH_2CH_3$ b) $(CH_3)_3C-CH_2OH$ c) $CH_3CH(OH)CH_2CH_2CH_3$
- d)(CH₃)₂CHCH₂OH

i) *m*-Nitrophenol

19. The formation of cyanohydrins from a ketone is an example of

ii) *m*-Cresol

a) nucleophilic addition b) electrophilic substitution c) nucleophilic substitution

iii) Phenol

iv) *m*-Chlorophenol

- d) electrophilic addition
- 20. Arrange the following compounds in the increasing order of their acidic strength
- a) ii< iv< iii<l b) ii <iii < i < iv c) iii < ii < i < iv d) ii < iii < iv < i

21. Acetic acid is treate final product is ,	d with Ca(OH) ₂ and	the product so obtain	ned is subjected to dry distillation. The	
a) Propanal	b) ethanol	c) ethanal	d) propanone	
22. One of the following	g conversion results	in the change of hyb	ridization and geometry	
a) NH $_3$ to NH $_4$ †	b) H ₂ O to H ₃ O ⁺	c) CH ₄ to C ₂ H ₆	d)BF ₃ to BF ₄	
23. Adenosine is an exa	mple of			
a) Purine base	b) nucleoside	c) nucleotide	d) pyrimidine base	
24. Glycogen is				
a) a structural polysacc	haride b	o) structurally similar	to amylopectin but extensively branched	
c) a polymer of ß-D-glue	cose units c	d) structurally very m	uch similar to amylopectin	
25. Which of the follow	ing aqueous solutio	n has the highest free	ezing point	
a) 0.01M NaCl	b) 0.01m Na ₂ SO ₄	c) 0.1 M sucros	e d) 0.1 M NaCl	
26. The emf of the thre	e galvanic cells are i	represented by E_1 , E_2	and E ₃	
I) Zn / Zn ²⁺ (1M) // Cu ²⁺	(1M) / Cu	II) Zn / Zn ²⁺ (0.1	M) // Cu ²⁺ (1M) / Cu	
III) Zn / Zn ²⁺ (1M) // Cu ²⁺ (0.1M) / Cu				
Which of the following	is true?			
a) $E_1 > E_2 > E_3$	b) $E_3 > E_2 > E_1$	c) $E_3 > E_1 > E_2$	d) $E_2 > E_1 > E_3$	
27. The hybridization of atomic orbitals of the transition metals in the following complexes are respectively				
[Fe $(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Ni(CN)_4]^{2-}$, $[Ni(CO)_4]$				
a) d^2sp^3 , sp^3d^2 , dsp^2 , s	p³ b) sp³d² ,d²	² sp ³ , sp ³ , dsp ²	c) sp^3d^2 , d^2sp^3 , dsp^2 , sp^3	
d) d^2sp^3 , sp^3d^2 , sp^3 , dsp	o^2			
28. The increasing orde	r of boiling points o	f the following comp	ound is,	
I) 1,2-dihydroxybenzen	e II) 1,3-dihy	droxybenzene	III) 1,4-dihydroxybenzene	
a) II < I < III	b) I < III < I	c)I < II <	d) III < II < I	
29. The IUPAC name of the given compound is				

- a) 2,4,4 trimethyl-hex-5-ene-5-ol
- b) 3,3,4,4-tetramethylbut-1-en-2-ol
- c) 3,3,5-trimethylhex-1-en-2-ol
- d) none of the above
- 30. Which of the following statement is not true
- a) Ampicillin is a natural antibiotic

- b) Aspirin is both analgesic and antipyretic
- c) Sulphadiazine is a synthetic antibacterial drug
- d) Soma disinfectant can be used as antiseptics
- 31. HCN, HCI/ AICI₃ X (CH₃CO)₂O , CH₃COONa Y

X and Y are respectively

32) O $HC \equiv C^- Na^+.NH_3$, H_3O^+ **X** dil. H_2SO_4 , Hg^{2+} , Heat **Y** OsO_4 , HIO_4 **Z**

Here, Z is....

a)
$$\begin{array}{c} COCH_3 \\ COOH \\ COOH \\ \end{array}$$
 b) $\begin{array}{c} COCH_3 \\ O \\ \end{array}$

33. Which of the following equation depicts reducing nature of H₂O

a) 2
$$[Fe(CN)_6]^{4-}$$
 + 2 H⁺ + H₂O₂ $2[Fe(CN)_6]^{3-}$ + 2 H₂O

b)
$$I_2 + H_2O + 2 OH^2$$
 $2I^2 + 2 H_2O + O_2$

c)
$$Mn^{2+} + H_2O_2$$
 $Mn^{4+} + 2 OH^{-}$

34. Which of the following does not give n-ethyl cyclopentyl amine as major product

a)
$$NH_2$$
 + CH_3CHO H_2/Pt

b)
$$\bigcirc$$
 + CH₃CH₂NH₂ $\xrightarrow{\text{H}_2/Pt}$

d)
$$NH_2$$
 CH_3COCI $(i) LiAlH_4$ $(ii) H_2O$

35. Which class of drugs is used in sleeping pills

- a) Analgesic
- b) Tranquilizer
- c) Antibiotic
- d) antihistamine
- 36. Which of the following statement is correct when a mixture of NaCl and $K_2Cr_2O_7$ is gently warmed with conc. H_2SO_4
- a) A deep red vapour is evolved
- b) The vapour when placed into NaOH solution gives a yellow solution of Na₂CrO₄
- c) Chlorine gas evolved
- d) Chromyl chloride is formed
- 37. Which of the following will undergo aldol condensation:
- a) Acetaldehyde

b) Propanaldhyde

c) Benzaldehyde

d) Trideuteroacetaldehyde

38. Tautomerism is exhibited by

39. Which of the follow	39. Which of the following statement is correct				
a) The pH is 1.0 X 10 ⁻⁸ M solution of HCl is 8					
b) The conjugate base of	b) The conjugate base of H ₂ PO ₄ ⁻ is HPO ₄ ²⁻				
c) Autoprotolysis const	ant of water increa	ase with temp	erature		
d) When a solution of a point , $pH = (1/2) pKa$	weak monoprotic	acid is titrate	d against a stron	g base at half neutralization	
40. The correct order o	f increasing C-O bo	ond length of (CO, CO ₃ ²⁻ and CO	₂ is	
a) $CO_3^{2-} < CO_2 < CO$	b) CO ₂ < CO ₃ ²⁻ < CO	c) CO <	$CO_3^{2-} < CO_2$	d) $CO < CO_2 < CO_3^{2-}$	
41. The oxidation numb	per of sulphur in S ₈	, S ₂ F ₂ , H ₂ S res	spectively are		
a) 0 , +1 and -2	b) +2, +1 and -2	c) 0 , +	1 and +2	d) -2 , +1 and -2	
42. The geometry of Ni	(CO) ₄ and Ni (PPh ₃) ₂ Cl ₂ are			
a) Both square planar	b) Tetrahedral an	nd square plan	ar respectively		
c) both tetrahedral) both tetrahedral d) square planar and tetrahedral respectively				
43. A solution of (+) 2 chloro-2-phenyl ethane in toluene racemises slowly in the presence of small amount of $SbCl_5$, due to the formation of					
a) Carbanion	b) carbene c) free- radical	d) carbocation		
44. The following statement is (are) correct					
a) A plot of log K _p v/s 1/T is linear					
b) A plot of log [X] v/s time is linear for a first order reaction, X P					
c) A plot of log P v/s 1/T is linear at constant volume					
d) A plot of P v/s 1/V is linear at constant temperature					
45. The correct order of acidic strength is					
a) $Cl_2O_7 > SO_2 > P_4O_{10}$	b) CO ₂ > I	$N_2O_5 > SO_3$	c) Na ₂ O > MgO	> Al ₂ O ₃	
d) $K_2O > CaO > MgO$					

46. Electrolytic reduction of alumina to aluminium by Hall-Heroult process is carried out				
a) in the presence of NaCl b) in	n the prese	nce of fluoride		
c) in the presence of cryolite which	c) in the presence of cryolite which forms a melt with lower melting temperature			
d) in the presence of cryolite which	d) in the presence of cryolite which forms a melt with higher melting temperature			
47. For the reversible reaction N_2 (g) + 3 H_2 (g) $\stackrel{\textstyle \sim}{=}$ 2 NH_3 (g) at 500 0 C, the value of Kp is 1.44 X 10^{-5} when partial pressure is measured in atmosphere. The corresponding value of Kc with concentration in mol L^{-1} is				
a) 1.44 X 10 ⁻⁵ / (0.082 X 500) ⁻²		b) 1.44 X 10 ⁻⁵ / (8.314X 773) ⁻²		
c) 1.44 X 10 ⁻⁵ / (0.082 X 773) ²		d) 1.44 X 10 ⁻⁵ / (0.082 X 773) ⁻²		
48. Which one of the following state	ement is fal	se?		
a) Work is a state function				
b) Temperature is a state function				
c) Change in the state is completely defined when the initial and final states are specified				
d) Work appears at the boundary of the system				
49. Saturated solution of KNO₃ is used to make salt-bridge because				
a) Velocity of K ⁺ is greater than that	of NO ₃	b) Velocity of NO_3^- is greater than that of K^+		
c) Velocity of K ⁺ and NO ₃ are nearly the same		d) KNO ₃ is highly soluble in water		
50. The common features among the species CN ⁻ , CO and NO ⁺ are				
a) bond order three and isoelectric		b) bond order three and weak field ligands		
c) bond order two and $\boldsymbol{\pi}$ acceptors		d) isoelectric and weak field ligand		
51. For H₃PO₃ and H₃PO₄ the correct choice is				
a) H ₃ PO ₃ is dibasic and reducing	b) H₃P(O₃ is dibasic and non reducing		
c) H ₃ PO ₄ is dibasic and reducing	d) H₃P	O₃ is tribasic and non reducing		

(a) COOH HOOC

53. H₃BO₃ is

- a) monobasic and weak lewis acid
- b) monobasic and weak Bronsted acid
- c) monobasic and strong lewis acid
- d) tribasic and weak Bronsted acid
- 54. 23 Na is the more stable isotope of Na. Find out the process by which 24 Na $_{11}$ can undergo radioactive decay
- a) f-emission
- b) α emission
- c) f+ emission
- d) k electron capture

55.
$$H+ \rightarrow F \xrightarrow{Br_2/CCl_4} C_4H_8Br_2$$
 (5 such product are possible)

How many structures of F is possible?

- (a) 2
- (b) 5
- (c) 6
- (d) 3
- 56. 2-phenyl propene on acidic hydration gives
- a) 2-phenyl-2-propanol
- b) 2-phenyl-1-propanol
- c) 3-phenyl-1-propanol
- d) 1-phenyl-2-propanol
- 57. The order of reactivity of phenyl magnesium bromide with the following

58. Spontaneous adsorption of a gas on solid surface is an exothermic process because			
a) Δ H increases for system b) Δ S increases for gas c) Δ S decreases for gas			s for gas
d) Δ G increases for gas			
59. The compound having tetrahedral geometry is			
a) [Ni(CN) ₄] ²⁻	b) [Pd(CN) ₄] ²⁻	c) [Pd(Cl) ₄] ²⁻	d) [Ni(Cl) ₄] ²⁻
60. 0.004M Na ₂ SO ₄ is isotonic with 0.01M glucose. Degree of dissociation of Na ₂ SO ₄ is			
a) 75 %	b) 50%	c) 25 %	D) 85 %

c) ||>|>|||

d) All react with same rate

a) II>III>I

b) I > III> I

Answer Blue

- 1. d
- 2. c
- 3. d
- 4. a
- 5. b
- 6. a and d
- 7. b
- 8. c
- 9. b
- 10. a
- 11. a
- 12. a
- 13. c
- 14. d
- 15. c
- 16. b
- 17. c
- 18. b
- 19. a
- 20. d
- 21. d
- 22. d
- 23. b
- 24. b
- 25. a
- 25. 0
- 26. d 27. c
- _,. c
- 28. c
- 29. c
- 30. a
- 31. c
- 32. c
- 33. b
- 34. c
- 35. b
- 36. b,c,d
- 37. a,b,d

- 38. a,c,d
- 39. c
- 40. d
- 41. a
- 42. c
- 43. d
- 44. a,b,d
- 45. a
- 46. c
- 47. d
- 48. a
- 49. c
- 50. a
- 51. a
- 52. c
- 53. a
- 54. a
- 55. d
- 56. a
- 57. c
- 58. c
- 59. d
- 60. a