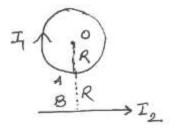
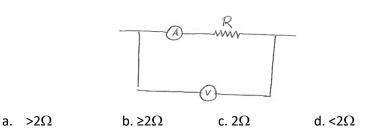

PHYSICS QUESTION PAPER -1


	 Direction of current induced in a wire moving in a magnetic field is found using a. Fleming's left hand rule b. Fleming's right hand rule c. Ampere's rule d. Right hand clasp rule The radius of ⁶⁴₂₉Cu nuclei in fermi is (given R₀ = 1.2x10⁻¹⁵ m) 	
۷.	a. 4.8 b. 1.2 c. 7.7 d. 9.6	
3.	3. The following truth table with A&B are input for gate	
	A B Output 1 0 1 1 1 0 0 1 1 0 0 0	
	a. AND b. OR c. XOR d. NOR	र
4.	4. A point source of light is kept below the surface of water ($n_w = 4/3$) at a depth of radius of the circular bright patch of light noticed on the surface of water is a. $3/\sqrt{7}$ b. 3 c. $\sqrt{7}/3$ d. $\sqrt{9}$	m
5.	5. In this circuit the value of I ₂ is	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6.	a. 0.2 A b. 0.3 A c. 0.4 A d. 0 6. Spectrum of sunlight is an example for a. Band emission spectrum b. Line emission spectrum c. Continuous emission spectrum d. Continuous absorption spectrum	.6 A
7.	7. Two fixed charges A & B of 5 μ C each are separated by a distance of 6m. C is the line joining A & B. A charge 'Q' of -5 μ C is shot perpendicular to the line joining with a kinetic energy of 0.06J. The charge 'Q' comes to rest at a point D. The distance of the line joining with a kinetic energy of 0.06J.	A & B through C
	a. 3 m b. $\sqrt{3}$ m c. 3 $\sqrt{3}$ m	d. 4 m
8.	When an additional charge of 2 C is given to a capacitor, energy stored in it is in The original charge of the capacitor is	ncreased by 21%.
	a. 30 C b. 40 C c. 10 C d. 20) C

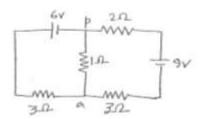
9. A current of 2 A flows in a system of conductors shown in figure. The potential difference V_A - V_B will be

a. 1 V b. -1 V b. -2 V c. 2 V

10. In the diagram I₁, I₂ are the strength of the currents in the loop and straight conductor respectively. OA=OB=R. The net magnetic field at the center O is zero. Then the ratio of the currents in the loop and straight conductors is


- a. π
- b. 2π
- c. $1/\pi$
- d. $1/2\pi$
- 11. In R-L-C series circuit the potential differences across each element is 20V. Now value of the resistance alone is doubled, then potential difference across R, L and C respectively

 - a. 20V, 10V, 10V b. 20V, 20V, 20V c. 20V, 40V, 40V
- d. 10V, 20V, 20V
- 12. Pickout the correct statement from the following
 - a. Mercury vapour lamp produces line emission spectrum
 - b. Oil flame produces line emission spectrum
 - c. Band spectrum helps us to study molecular structure
 - d. Sunlight spectrum is an example for line absorption spectrum
- 13. Pick out the correct statement from the following
 - 1. Electron emission during β -decay is always accompanied by neutrino


	2. N	uclear force is	charge independe	nt			
	3. Fu	usion is the ch	ief source of stellar	energy			
	a. 1	. & 2 are corre	ct b. 1 & 3 are	correct c.	Only 1 is correct	d. 2 & 3 are correct	
14.	When the transistor is used as an amplifier						
	a.		e junction must be	reversed bia	ised, collector-base	e junction must be forward	
	h	biased Emitter-bas	e junction must he	forward hias	sed collector-base	junction must be forward	
	D.	biased	e junetion must be	TOT Wara bia.	sea, concetor base	junction must be forward	
	C.	Emitter-bas biased	e junction must be	reversed bia	sed, collector-bas	e junction must be reverse	
		biased			sed, collector-base	junction must be reverse	
15.	Which	n of the follow	ing is not made my	quarks			
	a.	Neutron	b. Positron	c. Proton	d. π-meson		
16.	The o	utput of an OF	R gate is connected	to both the	inputs of a NAND ខ្	gate. The combination will	
	serve	as					
		AND gate	~	_	ate d. NOR gate		
17.						orizontal. After some time	
	its vel	ocity makes a	n angle of 30º to th	e horizontal.	The speed at this	instant is	
	a.	$10/\sqrt{3}$	b. $10\sqrt{3}$	c. $5/\sqrt{3}$	d. $5\sqrt{3}$		
18.	Pick o	ut the wrong	statement form the	e following			
	a.	Lateral shift	increases as the a	ngle of incide	ence increases		
	b.	Lateral shift	increases as the va	alue of refrac	ctive index increase	es	
	c.	Normal shif	t decreases as the	value of refra	active index increa	ses	
	d.	Both norma	l shift lateral shift a	are directly p	roportional to the	thickness of the medium	
19.		•		•	•	es separated by 1 mm	
			ifference of 500 V.	_		(g=10 m/s ²)	
	_	2x10 ⁻⁹ C	b. 2x10 ⁻¹¹ C		d. 2x10 ⁻⁸ C		
20.						urrent of 5A is passed	
		_	id, what is the mag				
			b. 6.28x10 ⁻⁴ T				
21.				-	_	eter of resistance 100 Ω in	
			inge 1A? Given: Fu		_	ometer is 5 mA	
	_	$0.5~\Omega$	b. 5/9.95 Ω	c. 0.05 Ω	d. 9.95/5 Ω		
22.			ius 10 cm and 100	turns carries	a current 1A. Wha	at is the magnetic moment	
	of the						
		3.142 Am ²	b. 3.142x10 ⁴ A			⁴ Am ²	
23.					•	s on the primary winding.	
			onnected 220 V 1A	A.C. source.	What is the outpu	t current of the	
		ormer?	_				
		100 A	b. 1/20 A	c. 2 A	d. 20 A		
24.	•	_	stationary satellite				
		30 h	b. 24 h	c. 48 h	d. 12 h	_	
25.	In and	malous expar	ision of water, at w	hat tempera	ture, the density o	of water is maximum	

- c. 10 °C $d. < 4^{\circ}C$ a. >4 °C b. 4 °C 26. A focal length of a lens is 10 cm. What is the power of the lens in dioptre? b. 0.1 D a. 15 D c. 20 D d. 10 D 27. The maximum kinetic energy of the photoelectrons depends only on a. Incident angle b. potential c. pressure d. frequency 28. A force between two protons is same as the force between proton and neutron. The nature of the force is a. Electrical force b. weak nuclear force c. gravitational force d. strong nuclear force 29. A carbon film resistor has colour code GREEN BLACK VIOLET GOLD. The value of the resistor is a. $500\pm5\%$ M Ω b. 50 M Ω c. 500 \pm 10% M Ω d. 500 M Ω 30. A proton beam enters a magntetic field of 10⁻⁴ Wb/m² normally. If the specific charge of the proton is 10¹¹ C/Kg and its velocity is 10⁹ m/s, then the radius of the circle described will be b. 1 m d. 100 m a. 10 m c. 0.1 m 31. The resistance of the bulb filament is 100 Ω at a temperature of 100 $^{\circ}$ C. If its temperature coefficient of resistance be 0.005 $/^{\circ}$ C, its resistance will become 200 Ω at a temperature of a. 400 °C b. 200 °C c. 300 °C d. 500 °C 32. Calculate the focal length of a reading glass of a person if the distance of distinct vision is 75cm c. 25.6 cm b. 100.4 cm d. 75.2 cm a. 37.5 cm 33. The polarizing angle of glass is 57°. A ray of light which is incident at this angle will have an angle of refraction at a. 33⁰ c. 25⁰ $b.38^{0}$ $d.43^{0}$ 34. What is the wavelength of light for least energetic photon emitted in the Lyman series of the hydrogen spectrum (Take hc=1240 eV nm)
- a. 102 nm b. 150 nm c. 82 nm d. 122 nm35. The angle between the dipole moment and electric field at any point on the equatorial plane is

 a. 90° b. 45° c. 0° d. 180°
- 36. On the circuit shown below, the ammeter and the voltmeter readings are 3A and 6A respectively. Then the value of the resistance is

37. In the circuit shown, the current in the 1 Ω resistor is

	a. 0.13 A from a to p b. 0.13 A from p to a c. 0.3 A from p to a d. 0 A
38.	On a hot summer night, the refractive index of air is smallest near the ground and increases wit
	height from the ground when a light beam is directed horizontally, the Huygen's principle leads
	us to conclude that as it travels, the light beam
	a. bends downwards b .bends upwards c. becomes narrower
	d. goes horizontally without any deflection
39.	A ball is projected from the ground at angle θ with the horizontal. After 1 s it is moving at an
	angle of 45° with the horizontal and after 2 s it is moving horizontally. What is the velocity of
	projectile of the ball? (take g=10m/s²)
	a. $10\sqrt{3}$ m/s b. $20\sqrt{3}$ m/s c. $10\sqrt{5}$ m/s d. $20\sqrt{2}$ m/s
40.	The component of vector $\vec{A} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}$ along the direction of $\hat{\imath}$ - $\hat{\jmath}$ is
	a. $a_x-a_y+a_z$ b. a_x-a_y c. $a_x-a_y/\sqrt{2}$ d. $a_x+a_y+a_z$
11	Let \vec{V} , V_{rms} , and V_p respectively denote the mean speed, root mean square speed and most
41.	
	probable speed of the molecules in an ideal monoatomic gas at absolute temperature T. The mass of the molecule is m. Then
	a. No molecule can have an energy greater than $\sqrt{2}V_{rms}$
	b. No molecula can have speed less than $V_p/\sqrt{2}$
	c. $V_p < \overline{V} < V_{rms}$
	d. The average kinetic energy of a molecule is $^3\!\!/\!\!$ m V_p^2
42.	The electron in a hydrogen atom makes a transition $n_1 \rightarrow n_2$ where n_1 and n_2 are the principal
	quantum number of two states. Assume the Bohr model to be valid. The time period of the
	electron in the intial state is eight times that in the final state. The possible values of n_1 and n_2
	are:
42	a. $n_1=4$, $n_2=2$ b. $n_1=8$, $n_2=2$ c. $n_1=4$, $n_2=1$ d. $n_1=6$, $n_2=3$
43.	Two particles, each of mass m and charge q are attached to the two ends of a light rigid rod of
	length 2R. The rod is rotated at constant angular speed about a perpendicular axis passing
	through its centre. The ratio of the magnitudes of the magnetic moment of the system and its
	angular momentum about the centre of the rod is a. $q/2m$ b. q/m c. $2q/m$ d. $q/\pi m$
11	
44.	A charge +q is fixed at each of the points $X=X_0$, $X=3X_0$, $X=5X_0$ on the x-axis and a charge -q is fixed at each of the points $X=2X_0$, $X=4X_0$, $X=6X_0$ Here X_0 is a positive constant. Take the
	electric potential at a point due to a charge Q at a distance r from it to be $Q/4\pi\epsilon_0$. Then the
	potential at the origin due to the above system of charges is: a. 0 b. $q/(8\pi\epsilon_0X_0ln2)$ c. ∞ d. $q ln(2)/(4\pi\epsilon_0X_0)$
4 -	
45.	Two cylinders A and B fitted with pistons contain equal amount of an ideal diatomic gas at 300 K. The piston of A is free to move, while that of B is held fixed. The same amount of heat is give
	to the gas in each cylinder. If the rise in temperature of the gas in A is 30 K, then the rise in
	temperature of the gas in B is a. 30 K b. 18 K c. 50 K d. 42 K
16	
40.	Two very long straight parallel wire carry steady currents I and –I respectively. The distance
	between the wire is I. At a certain instant of time a point charge q is at a point equidistant from

the two wire in the plane of the wire. Its instantaneous velocity V is perpendicular to this plane. The magnitude of the force due to the magnetic field acting on the charge at this instant is

a. $\mu_0 IqV/2\pi d$

b. μ₀lqV/πd

c. $2\mu_0 IqV/\pi d$

47. A closed compartment containing gas is moving with some acceleration in horizontal direction. Neglect effect of gravity. Then the pressure in the compartment is

a. Same everywhere

b. lower in front side c. lower in rear side

d. lower in upper side

48. In 1 s a particle goes from point A to point B, moving in a semicircle (see figure). The magnitude of the average velocity is

a. 3.14 m/s

b. 2.0 m/s

c. 1.0 m/s

d. zero

49. Two identical circular loops of metal wire are lying on a table without touching each other. Loop A carries a current which increases with time. In response, the loop B:

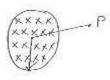
a. Remains stationary

b. is attracted by the loop A

c. is repelled by the loop A

d. rotates about its CM with CM fixed

50. A thin slice is cut of a glass cylinder along a plane parallel to its axis. The sliceis placed on a flat plate as shown. The observed interference from this combination shall be:


a. Straight

b. circular

c. equally spaced

d. having fringe spacing which increases as we go onwards

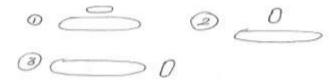
51. A uniform but time varying magnetic field B(t) exists in a circular region of radius a and is directed into the plane of the paper as shown. The magnitude of the induced electric field at point P at a distance r from the centre of the circular region

a. Is zero

b. decreases as 1/r

c. increases as r

- d. decreases as 1/r2
- 52. A monoatomic ideal gas initially at temperature T_1 is enclosed in a cylinder fitted with a frictionless piston. The gas is allowed expand adiabatically to a temperature T_2 by releasing the piston suddenly. If L_1 and L_2 are the lengths of the gas column before and after expansion respectively, then T_1/T_2 is given by
 - a. $(L_1/L_2)^{2/3}$
- b. (L_1/L_2)
- c. (L_2/L_1)
- d. $(L_2/L_1)^{2/3}$
- 53. A block of ice at -10 °C is slowly heated and converted into steam at 100 °C. Which of the following curves represents the phenomena qualitatively


- 54. In the given process of an ideal gas, dW=0 and dQ=0. Then for the gas
 - a. The temperature will decrease
- b. the volume will decrease
- c. the pressure will remain constant
- d. the temperature will increase
- 55. Two beam of light having intensities I and 4I interfere to produce a fringe pattern on a screen. The phase difference between the beams is $\pi/2$ at point A and π at point B. Then the difference between the resultant intensities at A and B is
 - a. 2
- h 41
- c. 5
- d. 7I
- 56. A quantity X is given by $\varepsilon_0 L(\Delta v/\Delta t)$ where ε_0 is the permittivity of free space, L is the length, Δv is a potential difference and Δt is a time interval. The dimensional formula for X is the same as that of
 - a. Resistance
- b. charge
- c. voltage
- d. current
- 57. A simple pendulum has a time period T_1 , when on the earth's surface and T_2 when taken to a height R above the earth's surface where R is the radius of the earth. The value of T_2/T_1 is
 - a 1
- b. $\sqrt{2}$
- c. 4
- d. 2
- 58. P-V plots for two gases during adiabatic process are shown on the figure. Plots 1 and 2 should correspond respectively to
 - a. He & O₂
- b. He & Ar
- c. O₂ & He
- d. $O_2 \& N_2$
- 59. The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle θ should be

a. O^0

b. 30⁰ c. 45⁰

d. 60⁰

60. Two circular coils can be arranged in any of the three situations shown in the figure. Their mutual inductance will be

a. Maximum in situation (1)

b. Maximum in situation (2)

c. Maximum in situation (3)

d. the same in all situations

Physics -1 - Brown –Answers:

		1	
1	b	31	a
2	a	32	a
3	С	33	a
4	b	34	d
5	С	35	d
6	b	36	d
7	d	37	a
8	d	38	b
9	а	39	С
10	d	40	С
11	а	41	c, d
12	a, c, d	42	a, d
13	d	43	a
14	d	44	d
15	b	45	d
16	d	46	d
17	а	47	b
18	С	48	b
19	b	49	С
20	а	50	а
21	b	51	b
22	а	52	d
23	d	53	a
24	b	54	а
25	b	55	b
26	d	56	d
27	d	57	d
28	d	58	b
29	a	59	С
30	d	60	а
30			a