

Session wise – Course Plan

NAME OF THE

FACULTY

Department of Mathematics

R : IV

NO OF HRS/WK

BRANCH : Civil A &B

SUBJECT : ENGG MATHS IV SUBJECT CODE : 15MAT41

:6

DATE OF COMMENCEMENT : 13.02.2017 DATE OF CLOSING : 02.06.2017 CLASS STRENGTH : 120 TOTAL HOURS : 67

Thulasi.L

S. No	Chapter no (No of hrs planned for the	DATE	Topics planned for the session	Teaching Aids	Assignments/Test s planned for the chapter	Topics covered As per plan
	chapter)					
1	1/1	13.2.17	INTRODUCTION .	Chalk , Duster		
2	2/1	14.2.17	Taylor's series method	,,		
3	3/1	15.2.17	Taylor's series method	"		
4	4/1	16.2.17	Modified Euler's method	"	Assignment- I	
5	5/1	17.2.17	Modified Euler's method	"		
6	6/1	18.2.17	Runge - Kutta method of fourth order			
7	7/1	20.2.17	Milne's Method			
8	8/1	21.2.17	AdamsBashforth Method			

9	1/2	22.2.17	Numerical Methods: Numerical solution of second order ordinary differential equations : Runge-Kutta method	"		
10	2/2	27.2.17	Numerical solution of second order ordinary differential equations : RungeKutta Method	,,		
11	3/2	28.2.17	Numerical solution of second order ordinary differential equations : Milne's method	,,		
12	4/2	01.03.17	Numerical solution of second order ordinary differential equations : Milne's method"Revision Test		Revision Test I	
13	1/3	02.03.17	Introduction complex variables	"		
14	2/3	06.03.17	Analytic functions-Cauchy-Riemann ,, equations in Cartesian forms.			
15	3/3	07.03.17	Cartesian equations in polar form	"		
16	4/3	08.03.17	Properties of analytic functions.	"		
17	6/3	09.03.17- 10.03.17	Properties and construction of analytic functions.	,,		
18	9/3	11.3.17- 13.3.17	Complex line integrals-Cauchy's theorem and Cauchy's integral formula	,,	Assignment- II	
19	11/3	14.3.17- 15.3.17	Residue, poles, Cauchy's Residue theorem (without proof) and problems	"		
20	12/3	16.7.13- 17.7.13	Transformations: Conformal transformations, discussion of transformations: $w \Box \Box_{z_2}, w \Box e^z$, $w \Box \Box_z \Box \Box \Box \Box 1/z \Box \Box \Box z \Box \Box 0 \Box \Box$		Revision Test II	
21	14/3	18.3.17- 20.3.17	Discussion of transformations: $w \square z \square \square 1/z \square \square z \square 0 \square \square$ problems			
19	16/3	21.3.17-	Bilinear transformations-problems	"		

		22.3.17			
20	1/4	22.3.17	Probability Distributions: Random variables (discrete and continuous), probability mass/density functions.	Probability Distributions: Random,,variables (discrete and continuous),,,probability mass/density functions	
21	1/4	31.3.17- 1.4.17	Binomial distribution	,,	Assignment –III
22	1/4	3.4.17	Poisson distribution	,,	
23	4/5	4.4.17	Exponential distributions-problems		
24	1/5	5.4.17	Normal distribution problems		
25	1/5	6.4.17	Sampling Theory: Sampling, Sampling distributions, standard error,	"	
26	1/5	17.4.17- 18.4.17	Test of hypothesis for means and proportions	"	
27	1/5	19.4.17- 20.4.17	Confidence limits for means		
28	1/5	21.4.17- 22.4.17	Confidence limits for means-problems		Revision Test III
29	1/5	23.4.17	Student's t-distribution		
30	1/5	24.4.17	Student's t-distribution		Assignment –IV
31	1/5	25.4.17	Chi-square distribution as a test of goodness of fit.		
32	1/5	26.4.17	Chi-square distribution as a test of goodness of fit problems	,,	
33	1/5	27.4.17	Test of hypothesis for means and proportions	"	
34	1/5	28.4.17	Test of hypothesis for means and proportions	"	
35	4/5	30.4.17	Stochastic process: Stochastic processes, probability vector	,,	Assignment –V
36	3/6	2.5.17- 4.5.17	Stochastic matrices, fixed points, regular stochastic matrices,	"	RevisionTest IV

37	5/6	5.5.17- 6.5.17	Markov chains, higher transition probability, simple problems.	دد		
38	6/6	11.5.17	Special Functions: Series solution- Frobenius method.			
39	7/6	12.5.17	Series solution of Bessel's differential equation leading to $J_n(x)$ -Bessel's function of first kind.,,			
40	8/6	12.5.17	Bessel's function of first kind-properties	,,		
41	9/6	13.5.17	Bessel's function -recurrence relations and orthogonality.	"		
42	10/6	15.5.17	Series solution of Legendre's differential equation leading to $P_n(x)$	"		
43	11/6	16.5.17	Legendre polynomials	,,	Assignment –VI	
44	12/6	17.5.17-	Rodrigue's formula, problems	"		
		21.5.17				
		21 .5.17 - 24.5.17	Revision			

Session wise – Course Plan

Department of Civil Engineering

SEMESTER : 4th A & B	NAME OF THE FACULTY	: Mr. Mohamed Yusuf
BRANCH : Civil	DATE OF COMMENCEMENT	: 13/02/2017
SUBJECT : Analysis of Determinate Structures	DATE OF CLOSING	: 24/05/2017
SUBJECT CODE: 15CV42	CLASS STRENGTH	: 49
NO OF HRS/WK: 6	TOTAL HRS	: 80

	Chapter no	Topics planned for	Teaching	Assignments/
Session No	(No of hrs planed for	the session	Aids	Tests planned for the
	the chapter)			chapter
1	1/1	Introduction, sign	Board,	•
		convention, basic	chalk,	
		concepts	duster	
2	2/1	Forms of structures,		
	-	Conditions of	,,,	
		equilibrium,		
3	3/1	Linear and Non linear	,,	
		structures, Determinate		
		and indeterminate		
		structures		
		[Static and		
		Kinematics]. Degree of		
		freedom		
4	4/1	Numerical examples	,,	
		on determining		
~	<i>E</i> /1	Degrees of freedom.		
5	5/1	introduction to trusses,	"	
6	6/1	Analysis of truss by		
0	0/1	method of joints	,,	
7	7/1	Analysis of truss by		Assignment-I
1	//1	method of joints	"	Assignment-1
8	8/1	Analysis of truss by	Board.	
Ũ	0/1	method of sections	chalk	
			duster	
9	1/2	Introduction to	Gubioi	
		deflection of beams	"	
10	2/2	Explanation of		
		theorems on moment	,,	
		area		

11	3/2	Numerical examples on moment area method	"	
10		Normalization and an an an and and and		
12	4/2	Numerical examples on moment area method	"	
13	5/2	Numerical examples on moment area method	"	
14	6/2	Numerical examples on moment area method	,,	
15	7/2	Numerical examples on moment area method		
16	8/2	Numerical examples on moment area method		
17	9/2	Numerical examples on moment area method		
18	10/2	Numerical examples on moment area method	"	
19	11/2	Numerical examples on moment area method	,,	Assignment III
20	12/2	Introduction to conjugate beam method	,,	
21	13/2	Numerical examples on conjugate beam method	"	
22	14/2	Numerical examples on conjugate beam method	"	
23	15/2	Numerical examples on conjugate beam method		
24	16/2	Numerical examples on conjugate beam method	Board, chalk, duster	
25	1/3	Introduction to strain energy method	"	
26	2/3	Strain energy and complimentary strain energy	,,	
27	3/3	Strain energy due to axial load, bending and shear	,,	Assignmnt –IV
28	4/3	Theorem of minimum potential energy, Law of conservation of energy, Principle of virtual work,	,,	
29	5/3	The first and second theorem of Castigliano	"	
30	6/3	problems on beams	,,	
31	7/3	problems on frames	,,	

32	8/3	problems on trusses	,,	
33	9/3	Betti's law, Clarke - Maxwell's theorem of reciprocal deflection	Board, chalk, duster	Assignment -V
34	1/4	Analysis of beams by unit load method	"	
35	2/4	Analysis of frames by unit load method	"	
36	3/4	Analysis of trusses by unit load method	,,	
37	4/4	Analysis of beams by strain energy method	,,	
38	5/4	Analysis of frames by strain energy method	"	
39	6/4	Analysis of trusses by strain energy method	"	
40	1/5	Introduction to Cables and Arches	"	
41	2/5	Analysis of three hinged circular arches with supports at same levels	,,	
42	3/5	Analysis of parabolic arches with supports at same levels	,,	
43	4/5	Analysis of parabolic arches with supports at same levels	,,	
44	5/5	Analysis of parabolic arches with supports at same levels	,,	
45	6/5	Analysis of parabolic arches with supports at same levels	,,	
46	7/5	Analysis of parabolic arches with supports at same levels	,,	
47	8/5	Analysis of three hinged circular arches with supports at same levels	,,	
48	9/5	Analysis of three hinged circular arches with supports at same levels	,,	
49	10/5	Analysis of parabolic arches with supports at different levels	Board, chalk, duster	
50	11/5	Analysis of parabolic arches with supports at different levels	"	
51	12/5	Analysis of three hinged circular arches with supports at different levels	,,	
52	13/5	Analysis of three hinged circular arches with supports at different levels	"	

53	14/5	Analysis of three hinged circular arches with supports at different levels	"	
5 4	4 = 1 =	And the fact the second		
54	15/5	Analysis of cables under point loads and UDL,	,,	
		length of cables		
		(Supports at same levels and at different levels)		
55	16/5	Analysis of cables under point loads and UDL,	,,	
		length of cables		
		(Supports at same levels and at different levels)		
56	17/5	Analysis of cables under point loads and UDL,		
	1110	length of cables	"	
		(Supports at same levels and at different levels)		
57	1/6	Introduction to Analysis of two hinged		
57	1/0	neuclion to Analysis of two hingen	,,	
		parabolic Arch		
58	2/6	Analysis of two hinged parabolic Arch	,,	
		Analysis of two inliged parabolic Aren		
59	3/6	Numerical examples on two hinged parabolic		
57	5/0	Arch	"	
(0)	ALC			
60	4/6	Numerical examples on two hinged parabolic	,,	
		Arch		
61	5/6	Numerical examples on two hinged parabolic		
		Arch		
62	716			
02	//0	Analysis of two hinged circular Arch		
63	8/6	Numerical examples on two hinged circular Arch		
		Numerical examples on two ninged circular Aren		
64	9/6			
710		Numerical examples on two hinged circular Arch		
(5	1/7	Introduction to Three moment Equation		
65	1//	Infoduction to Three moment Equation		
66	2/7	Theorem of three moment equation		
67	3/7	Numerical examples on continuous beam		
07	511	······································		
(0	A 199	Numerical anomalas en continuous harm		
68	4/1	Numerical examples on continuous beam		
69	5/7	Numerical examples on continuous beam		
70	617	Numerical examples on fixed beam		
70	0/ /	Tumerical examples on fixed beam		
71	7/7	Numerical examples on fixed beam		
72	8/7	Numerical examples on fixed beam		
12	0/1	1		
70	1/0	Dolling Lood and Influence Lines		
13	1/8	Konnig Load and Influence Lines		
		Explanation of Kolling load and influence lines		
74	2/8	Rolling load analysis for simply supported beams		
-		for several point loads and fractional UDL		
75	2/8	Rolling load analysis for simply supported beams		
15	3/0	for several point loads and fractional UDI		
		Tor several point toads and fractional ODL		
76	4/8	Influence line diagram for reaction, SF and BM at		
		a given section for the given numerical problems		

77	5/8	Influence line diagram for reaction, SF and BM at a given section for the given numerical problems	
78	6/8	Influence line diagram for reaction, SF and BM at a given section for the given numerical problems	
79	7/8	Influence line diagram for reaction, SF and BM at a given section for the given numerical problems	
80	8/8	Influence line diagram for reaction, SF and BM at a given section for the given numerical problems	

Sessional #	Syllabus
T1	Class # 01 – 80
RB 1	Class # 01 – 80

Pool: Tuno	Codo	Author & Title	Publication info	
book Type	Book Type Code Author & Title		Edition & Publisher	ISBN #
Text Book	TB1	Theory of structures by S.Ramamrutham	Dhanpath Rai	81 -219-0003-4
Reference Book	RB1	Structural analysis by G.S.Pandit	Tata Mc Graw Hill	978-81-775-8587-2

Signature of faculty

Signature of HOD

Signature of Principal

DEPARTMENT OF CIVIL ENGINEERING

Subject Code: 10CV43 **Subject Name: Applied Hydraulics** SEMESTER : IVA & B NAME OF THE FACULTY : Dr.Giridhar BRANCH : CIVIL DATE OF COMMENCEMENT : 13.01.2017 : HYDRAULICS AND HYDRAULIC MACHINES DATE OF CLOSING **SUBJECT** : 24.05.2017 SUBJECT CODE : 15CV43 CLASS STRENGTH : 60 NO OF HRS/ WK: 6 TOTAL HRS :60

Session No	Chapter no (No of hrs planed for the chapter)	Topics planned for the session	Teaching Aids	Assignments/ Tests planned for the chapter	Topics covered As per plan
1	1/4	Introduction. Impulse- Momentum equation. Theory and derivation	Board, chalk		
2	2/4	Direct impact of a jet on a stationary flat plate	,,		
3	1/2	Introduction. Discussion on Fluid Mechanics topics	,,		
4	3/4	Oblique impact of a jet on a stationary flat plate,	,,		
5	2/2	Open Channel Flow, Geometric properties of Rectangular	,,	Assignment -I	
6	4/4	Problems on impact of jet on stationary plates	,,		
7	5/4	Direct impact on a moving plate,	,,		
8	3/2	Geometric properties of Trapezoidal and Circular channels(derivation)	,,		
9	6/4	Direct impact of a jet on a series of flat vanes on a wheel	Board, chalk		
10	4/2	Derivation of Chezy's Equation, Manning's Equation	,,		
11	7/4	Conditions for maximum hydraulic efficiency.	,,		
12	8/4	Impact of a jet on a hinged flat plate	,,		
13	5/2	Most economical open channels- Rectangular	,,		
14	9/4	Problems on the above moving plates	,,		
15	6/2	Most economical open channels-	,,	Assignment –II	

		triangular channels			
16	10/4	Problems on hinged plates	,,		
17	1/5	Introduction, Force exerted by a jet on a	Board,		
		fixed curved vane, moving curved vane.	chalk		
18	7/2	Most economical open	,,		
		channels-trapezoidal conduits			
19	2/5	Problems on Force exerted by a jet on a	,,		
		fixed curved vane, moving curved vane.			
20	8/2	Most economical open channels-	,,		
		Circular conduits			
21	3/5	Introduction to concept of velocity	,,		
		triangles,			
22	4/5	Problems on concept of velocity triangles	,,		
23	9/2	Problems on most economical channels	,,		
24	5/5	Impact of jet on a series of curved vanes-	Board,		
	10/0	problems	chalk		
25	10/2	Problems on most economical channels			
26	6/5	Problems on Impact of jet on a series of	,,		
07	1.17	curved vanes-			-
27	1/5	Introduction to Turbines, Classification	,,		
20	1/2	Of Turbines.			
20	1/5	energy diagram	,,		
20	2/5	Palton wheel components working			_
30	2/3	Critical depth Conditions for Critical	,,		-
50	213	flow- Theory	"		
31	3/5	Velocity triangle of a pelton wheel			-
32	4/5	Maximum Power efficiency working	,,	Assignment -	-
52	175	proportions	"	III	
33	3/3	Problem on critical depth			
34	5/5	Problems on Pelton wheel	Board.		
0.	0,0		chalk		
35	4/3	Hydraulic jump in a Horizontal			
		Rectangular Channel- Theory	,,		
36	1/4		,,		-
		Introduction, Components, Working			
27	2/4	Properties of the Turbine.			
3/	2/4	velocity triangles for the Kapian turbine	,,		
38	5/3	Problems on hydraulic jump	,,		-
39	3/4	Discharge of the Turbines, Number of	"		
40	(1)	Blades			
40	0/3	in an Open channel	"		
41	A / A	Draft Tube: Types afficiency of a Draft			+
41	4/4	tube	,,		
12	5//	Problems on draft tube			
→ ∠	51+		••	1	1

43	7/3	Classification of Surface profiles	,,	
44	6/4	Introduction to Cavitation in Turbines.	,,	
45	8/4	Simple problems on Surface profiles	,,	
46	7/4	Problems on Kaplan turbine	Board,	Assignment -
			chalk	IV
47	1/5	Introduction to pumps. Different types of Pumps - Classification	"	
48	1/1	Introduction, Systems of units, Dimensions of quantities	"	
49	2/3	Priming, methods of priming. Heads and Efficiencies of pumps		
50	2/1	Dimensional Homogeneity of an equation. Analysis- Raleigh's method		
51	3/4	Equation for work done, minimum starting speed, velocity triangles		
52	4/4	Multistage Centrifugal Pumps : Pumps in Series	,,	
53	3/1	Dimensional Homogeneity of	Board,	
		an equation. Analysis- Buckingham's	chalk,	
		Π	duster	
54	5/5	Multistage Centrifugal Pumps and Pumps in parallel	,,	
55	4/1	Problems using Raleigh's method and Buckingham's π method	"	
56	6/5	Characteristic Curves for a Single stage Centrifugal Pumps	"	
57	7/5	Problems on centrifugal pumps	,,	
58	5/1	Model Studies, Similitude, Non-dimensional numbers: Froude models	"	
59	6/1	Undistorted and Distorted models. Reynolds's models	Board, chalk	
60	7/1	Problems on the different models	,,	

Syllabus for Sessionals:

Sessional #	Syllabus
T1	Class # 01 – 30
T2	Class # 31 – 52
T3	Class # 31-60

Literature:

Pool: Type	Cod	Author & Title	Publication info		
Book Type	e	Author & Thie	Edition & Publisher	ISBN #	
Text Book	TB1	R. K. Rajput, "A Text Book of Fluid Mechanics and Hydraulic Machines"	2006 Edition, S Chand & Co	81 219 1666 6	
Text Book	TB2	N. Narayana Pillai, "Principals of Fluid Mechanics & Fluid Machines"	2009 Edition, University Press	978 81 7371 675 1	
Text Book	TB3	Madan Mohan Das, "Fluid Mechanics and Turbomachines"	2009 Edition, PHI	978 81 203 3523 3	
References	RB1	Dr. R. K. Bansal, "A Textbook of Fluid Mechanics and Hydraulic Machines"	2008 Edition, Laxmi Publications	978 81 318 0815 3	
References	RB2	Dr. P. N. Modi & Dr. S. M. Seth, " Hydraulics and Fluid Mechanics including Hydraulic machines"	18 th Edition 2011, Rajsons Publications	818940126 2	

CMR

Session wise – Course Plan

Department of Civil Engineering

SEMESTER	:IV A NAME OF THE	E FACULTY	: MrShivakuma	ra M J	
BRANCH :	CIV		DATE OF C	OMMENCEMENT	:13.02.2017
SUBJECT :	Concrete Technology				
DATE OF	CLOSING	: 24.05.2017			
SUBJECT CODE :	15CV44	CLASS	STRENGTH	: 49	
NO OF HRS/WK :	5	TOTAL HRS	:55		

Session No	Chapter no (No of hrsplaned for the chapter)	Topics planned for the session	Teaching Aids	Assignments/ Tests planned for the chapter	Topics covered As per plan
1	1/1	Introduction to the subject	Board		
1	1/1	Concrete Technology Discussion	chalk		
		on Learning objectives and	duster		
		outcome of the subject.	aastor		
2	2/1	Cement – Cement manufacturing	Board,		
		process, steps to reduce carbon	chalk,		
		footprint,	duster		
3	3/1	chemical composition and their	Board,		
		importance, hydration of cement,	chalk,		
		types of cement. Testing of	duster		
		cement.			
4	4/1	Coarse aggregate: Importance of	Board,		
		size, shape and texture.	chalk,		
-			duster		
5	5/1	Coarse aggregate: Grading and	PPT and		
		blending of aggregate. Testing on	video		
		aggregate, requirement.			
6	6/1	Recycled aggregates	Board.		
-		Water – qualities of water.	chalk,		
		1	duster		
7	7/1	Fine aggregate: Functions,	Board,		
		requirement.	chalk,		
			duster		

8	8/1	Fine aggregate: Alternatives to	Board,		
		River sand, M-sand introduction	chalk,		
		and manufacturing.	duster		
9	9/1	Chemical admixtures –	Board,		
		plasticizers, accelerators, retarders	chalk,		
		and air entraining agents.	duster		
10	10/1	Mineral admixtures – Pozzolanic	Board,	Assignment- I	
		and cementitious materials,	chalk,		
		Flyash, GGBS, silica fumes,	duster		
11	11/1	Class test on Module 1			
11	11/1	Class test on Module 1			
12	1/2	Introduction to Module 2.			
10					
13	2/2	Workability-factors affecting	"		
		workability			
14	3/2	Measurement of workability–	PPT and		
		slump, Compaction factor and	Video		
		Vee-Bee Consistometer tests,			
		flow tests.			
15	4/2	Segregation and bleeding.	Board,		
			chalk,		
16	5/2	Duccess of manufacturing of	duster		
10	5/2	concrete Batching Mixing	board,		
		Transporting	duster		
17	6/2	Process of manufacturing of	Board.		
		concrete- Placing and	chalk,		
		Compaction.	duster		
18	7/2	Curing – Methods of curing –	,,		
		Water curing, membrane curing,			
		steam curing, accelerated curing,			
		selfcuring.			
19	8/2	Good and Bad practices of	,,	Assignment –	
		making and using fresh concrete.		II	
20	9/2	Effect of heat of hydration during	"		
		mass concreting at project sites.			
21	10/2	Class Test-2 on Module 2			
22	1/3	Introduction to Module 3	Board,		
		Hardened concrete.	chalk,		
			duster		

23	2/3	Factors influencing strength, W/C	Board,		
		ratio, gel/space ratio, Maturity	chalk,		
		concept,	duster		
24	3/3	Testing of hardened concrete,	PPT and		
			Video		
25	4/3	Creep –factors affecting creep.	Board,		
			chalk,		
			duster		
26	5/3	Shrinkage of concrete – plastic	22		
		shrinking and drying shrinkage,			
		Factors affecting shrinkage.			
27	6/3	Definition and significance of	22		
		durability. Internal and external			
		factors influencing durability,			
28	7/3	Mechanisms- Sulphate attack –	.,	Assignmnt –	
		chloride attack, carbonation,		III	
		freezing and thawing.			
29	8/3	Corrosion, Durability			
		requirements as per IS-456.	,,,		
30	9/3	Insitu testing of concrete-	PPT and		
		Penetration and pull out test,	Video		
		rebound hammer test, Principal,			
		applications and limitations.			
31	10/3	Ultrasonic pulse velocity, core	PPT and		
		extraction – Principal,	Video		
		applications and limitations.			
32	11/3	Class test on Module 3 Hardened			
		concrete.			
33	1⁄4	Introduction to Module 4, Concrete mix	Board,		
		proportioning.	chalk,		
			duster		
34	2/4	Concept of Mix Design with and			
		without admixtures.	· · · ·		
35	3/4	Variables in proportioning.	,,		
36	4/4	Exposure conditions,	,,		
37	5/4	Class test on Unit-4	,,		
20		Soloction onitoric of in andiants			
38	0/4	Selection criteria of ingredients	"		
20	7/4	Dragadure of mix group artice in a			
39	//4	Procedure of mix proportioning.	"		
		numerical Examples of Mix	1	1	

		Proportioning using IS-10262			
40	8/4	Mix proportioning for different grade concrete Examples.	,,		
41	9/4	Mix proportioning for different grade concrete Examples.	"		
42	10/4	Mix proportioning for different grade concrete Examples.	,,	Assignment – IV	
43	12/4	Class test on Module 4	,,		
44	1/5	Introduction to Module 5 Special concretes.	,,		
45	2/5	RMC- manufacture and requirement as per QCI- RMCPCS, properties, advantages and disadvantages.	"		
46	3/5	RMC- manufacture and requirement as per QCI- RMCPCS, properties, advantages and disadvantages.	"		
47	4/5	. Self-Compacting concrete- concept, materials, tests, properties, application and typical mix.	"		
48	5/5	. Self-Compacting concrete- concept, materials, tests, properties, application and typical mix.	"		
49	6/5	Fiber reinforced concrete - Fibers types, properties, application of FRC.	,,		
50	7/5	Light weight concrete-material properties and types.	"		
51	8/5	Typical light weight concrete mix and applications.	,,	Assignment – V	
52	9/5	Industry orientation.	,,		
53	10/5	Class test			
54	11/5	Mock Exam			
55	3/7	Discussion on Performance			

Session wise – Course Plan

Department of Civil Engineering

SEMESTER :IV A	NA	ME OF THE FACU	LTY : Mr Shivakumara M J
BRANCH : CIV	Dz	ATE OF COMMENC	CEMENT :13.02.2017
SUBJECT : Concrete Techno	ology DA	ATE OF CLOSING	: 24.05.2017
SUBJECT CODE :15CV44	CLASS STRENGTH	I : 49	
NO OF HRS/WK : 5	TOTAL HRS :55	5	

Session No	Chapter no (No of hrsplaned for the chapter)	Topics planned for the session	Teaching Aids	Assignments/ Tests planned for the chapter	Topics covered As per plan
1	1/1	Introduction to the subject Concrete Technology, Discussion on Learning objectives and outcome of the subject.	Board, chalk, duster		
2	2/1	Cement – Cement manufacturing process, steps to reduce carbon footprint,	Board, chalk, duster		
3	3/1	chemical composition and their importance, hydration of cement, types of cement. Testing of cement.	Board, chalk, duster		
4	4/1	Coarse aggregate: Importance of size, shape and texture.	Board, chalk, duster		
5	5/1	Coarse aggregate: Grading and blending of aggregate. Testing on aggregate, requirement.	PPT and Video		
6	6/1	Recycled aggregates Water – qualities of water.	Board, chalk, duster		
7	7/1	Fine aggregate: Functions, requirement.	Board, chalk, duster		

8	8/1	Fine aggregate: Alternatives to	Board,		
		River sand, M-sand introduction	chalk,		
		and manufacturing.	duster		
9	9/1	Chemical admixtures –	Board,		
		plasticizers, accelerators, retarders	chalk,		
		and air entraining agents.	duster		
10	10/1	Mineral admixtures – Pozzolanic	Board,	Assignment- I	
		and cementitious materials,	chalk,		
		Flyash, GGBS, silica fumes,	duster		
11	11/1	Class test on Module 1			
11	11/1	Class test on Module 1			
12	1/2	Introduction to Module 2.			
10					
13	2/2	Workability-factors affecting	"		
		workability			
14	3/2	Measurement of workability–	PPT and		
		slump, Compaction factor and	Video		
		Vee-Bee Consistometer tests,			
		flow tests.			
15	4/2	Segregation and bleeding.	Board,		
			chalk,		
16	5/2	Duccess of manufacturing of	duster		
10	5/2	concrete Batching Mixing	board,		
		Transporting	duster		
17	6/2	Process of manufacturing of	Board.		
		concrete- Placing and	chalk,		
		Compaction.	duster		
18	7/2	Curing – Methods of curing –	,,		
		Water curing, membrane curing,			
		steam curing, accelerated curing,			
		selfcuring.			
19	8/2	Good and Bad practices of	,,	Assignment –	
		making and using fresh concrete.		II	
20	9/2	Effect of heat of hydration during	"		
		mass concreting at project sites.			
21	10/2	Class Test-2 on Module 2			
22	1/3	Introduction to Module 3	Board,		
		Hardened concrete.	chalk,		
			duster		

23	2/3	Factors influencing strength, W/C	Board,		
		ratio, gel/space ratio, Maturity	chalk,		
		concept,	duster		
24	3/3	Testing of hardened concrete,	PPT and		
			Video		
25	4/3	Creep –factors affecting creep.	Board,		
			chalk,		
			duster		
26	5/3	Shrinkage of concrete – plastic	22		
		shrinking and drying shrinkage,			
		Factors affecting shrinkage.			
27	6/3	Definition and significance of	22		
		durability. Internal and external			
		factors influencing durability,			
28	7/3	Mechanisms- Sulphate attack –	.,	Assignmnt –	
		chloride attack, carbonation,		III	
		freezing and thawing.			
29	8/3	Corrosion, Durability			
		requirements as per IS-456.	,,,		
30	9/3	Insitu testing of concrete-	PPT and		
		Penetration and pull out test,	Video		
		rebound hammer test, Principal,			
		applications and limitations.			
31	10/3	Ultrasonic pulse velocity, core	PPT and		
		extraction – Principal,	Video		
		applications and limitations.			
32	11/3	Class test on Module 3 Hardened			
		concrete.			
33	1⁄4	Introduction to Module 4, Concrete mix	Board,		
		proportioning.	chalk,		
			duster		
34	2/4	Concept of Mix Design with and			
		without admixtures.	· · · ·		
35	3/4	Variables in proportioning.	,,		
36	4/4	Exposure conditions,	,,		
37	5/4	Class test on Unit-4	,,		
20		Soloction onitoric of in andiants			
38	0/4	Selection criteria of ingredients	"		
20	7/4	Dragadure of mix group artice in a			
39	//4	Procedure of mix proportioning.	"		
		numerical Examples of Mix	1	1	

		Proportioning using IS-10262			
40	8/4	Mix proportioning for different grade concrete Examples.	,,		
41	9/4	Mix proportioning for different grade concrete Examples.	"		
42	10/4	Mix proportioning for different grade concrete Examples.	,,	Assignment – IV	
43	12/4	Class test on Module 4	,,		
44	1/5	Introduction to Module 5 Special concretes.	,,		
45	2/5	RMC- manufacture and requirement as per QCI- RMCPCS, properties, advantages and disadvantages.	"		
46	3/5	RMC- manufacture and requirement as per QCI- RMCPCS, properties, advantages and disadvantages.	"		
47	4/5	. Self-Compacting concrete- concept, materials, tests, properties, application and typical mix.	"		
48	5/5	. Self-Compacting concrete- concept, materials, tests, properties, application and typical mix.	"		
49	6/5	Fiber reinforced concrete - Fibers types, properties, application of FRC.	,,		
50	7/5	Light weight concrete-material properties and types.	"		
51	8/5	Typical light weight concrete mix and applications.	,,	Assignment – V	
52	9/5	Industry orientation.	,,		
53	10/5	Class test			
54	11/5	Mock Exam			
55	3/7	Discussion on Performance			

#132, AECS Layout, IT Park Road, Kundalahalli, Bangalore – 560 037 T:+9180 28524466 / 77

CMR INSTITUTE OF TECHNOLOGY

Session wise - Course Plan

Department of Civil Engineering

SEMESTER : IV A& B BRANCH : CV SUBJECT : BGE SUBJECT CODE : 15CV45 NO OF HRS/WK : 6 NAME OF THE FACULTY: Dr Asha M NairDATE OF COMMENCEMENT: 13.02.2017DATE OF CLOSING: 03.06.2017CLASS STRENGTH: 54TOTAL HRS: 66

Session No	Chapter no (No of hrs planed for the chapter)	Topics planned for the session	Teaching Aids	Assignments/ Tests planned for the chapter
1.		Over view of this subject, challenges of a geotechnical engineer.		
2.		Origin of soil, prescribed books, History of soil mechanics		
3	1/1	Phase diagram and basic relationships	Board, chalk, duster	
4	2/1	Relationships between dry density, bulk density, water content and dry density and percentage air voids.	"	
3	3/1	Problems on phase diagram	"	
4	4/1	Index properties, definition, water content as an index property and its determination	,,	
5	5/1	Specific gravity and its determination	,,	
6	6/1	Stoke's law and expression for particle diameter, Sedimentation analysis.	,,	

7	7/1	Hydrometer principle, soil suspension preparation	"	
8	8/1	Video on particle size determination using hydrometer, sand bath method, calcium carbide method for w/c determination	ppt and video	
9	9/1	Limitations of sedimentation analysis, particle size distribution curve, uses	"	Assignment- I
10	10/1	C_u and C_c , problem on grain size distribution curve	,,	
11	11/1	Insitu density determination- core cutter and sand replacement method	,,	
12	12/1	Consistency limit, LL, PL, and SL	"	
13	13/1	Toughness index and activity of clay, relative density, problems	"	
14	14/1	Unified and BIS soil classification systems.	"	
15	1/2	Types of soil structure, Types of bonds- primary bond (covalent bond, metallic bond and ionic bond)	"	
16	2/2	Secondary bonds (hydrogen bond, van der waals forces). Diffused double layer theory	>>	
17	3/2	Basic structural unit of clay mineral, tetrahedral unit, octahedral unit, cation exchange capacity	>>	
18	4/2	Types of clay minerals, kaolinite, illite and montmorillonite	,,	
19	5/2	Definition, principle of compaction, standard proctor compaction test	.,	
20	6/2	Modified proctor compaction test – Numerical problems	,,	
21	7/2	Factors affecting compaction and effect of compaction on soil properties	,,	
22	8/2	Field compaction control – compactive effort and method, lift thickness and number of passes	22	Assignment - II
23	9/2	Field compaction control (continued)- proctors needle	,,	
24	10/2	Compacting equipments and their suitability.	,,	
25	11/2	Video on field compaction methods	ppt and video	Assignment -III

26	1/3	Permeability, Darcy's law- assumption and validity, coefficient of permeability		
27	2/3	Determination of permeability laboratory method – Numerical problems	,,	
28	3/3	Determination of permeability field method – Numerical problem	,,	
29	4/3	Factors affecting permeability, permeability of stratified soils – Numerical problems	,,	
30	5/3	Seepage velocity, superficial velocity and coefficient of percolation- Numerical problems	"	
31	6/3	Quick sand phenomena and capillary phenomena	,,	
32	7/3	Laplace equation-assumptions and limitations.	"	
33	8/3	Derivation of Laplace equation.	Board, chalk, duster	
34	9/3	Flow nets- characteristics and applications	"	
35	10/3	Flow nets for sheet piles and below the dam section	PPT	Assignmnt – IV
36	11/3	Phreatic line (Casagrande's method –with and without toe filter),	Board, chalk, duster	
37	12/3	Flow through dams, design of dam filters	"	
38	13/3	Effective stress concept- total, effective and neutral stress - Numerical problems	"	
39	14/3	Impact of the effective stress in construction of structures, Quick sand phenomena	,,	
40	1/4	Definition, Mass-spring analogy	"	
41	2/4	Terzaghi's one dimensional consolidation theory-assumption and limitations.	"	
42	3/4	Derivation of Governing differential Equation	,,	Assignment - V

43	4/4	Pre-consolidation pressure and its	,,	
		determination by Casagrande's		
		method.		
44	5/4	Normally consolidated, under consolidated		
		and over	,,	
		consolidated soils.		
45	6/4	Determination of consolidation		
	0, 1	characteristics of soil compression index	"	
		and coefficient of consolidation – Square		
		root of time fitting method		
46	7/4			
10	// 4	Numerical gradient	"	
477	0/4	Numerical problem		
4/	8/4	Determination of consolidation	"	
		characteristics of soil compression index		
		and coefficient of consolidation –		
10	0.14	Logarithmic time fitting method		
48	9/4		"	
		Numerical problem		
49	10/4		Board,	
			chalk,	
		Primary and secondary consolidation.	duster	
50	1/5			
		Concept of shear strength		
51	2/5			Assignment -
01			"	VI
		Mohr–Coulomb Failure Criterion		V 1
52	3/5		"	
		Modified Mohr–Coulomb Criterion		
53	4/5	Concept of pore pressure, Total and	,,	
		effective shear strength		
		parameters		
54	5/5		Board,	
			chalk,	
		Factors affecting shear strength of soils	duster	
55	6/5	Thixotrophy and sensitivity,	,,	
56	7/5	Measurement of shear strength parameters	,,	
		– Direct shear test, Problems		
57	8/5	Tri axial Compression test – UU	,,	
		Condition		
58	9/5			
		Tri axial Compression test – CU Condition		
59	10/5		Board.	
	1010		chalk.	
		Tri axial Compression test – CD Condition	duster	
		The using compression test CD condition	445101	

60	11/5	Unconfined compression test- Numerical problem	"	
61	12/5		,,	
		Vane shear test		
62	13/5		,,	
		Total and effective stress paths.		
63			,,	
		Revision		
64			,,	
		Revision		
65			,,	
		Revision		
66			,,	
		Revision		

#132, AECS Layout, IT Park Road, Kundalahalli, Bangalore – 560

037 T:+9180 28524466 / 77

CMR INSTITUTE OF TECHNOLOGY

Session wise – Course Plan

Department of Civil Engineering

SEMESTER	: IV 'A'			
BRANCH	: CIV			
SUBJECT	: Advanced Surveying			
SUBJECT COL	DE : 15CV46			
NO OF HRS/WK : 5				

NAME OF THE: Mr Kiran RGFACULTY DATE OF: 13-02-2017DATE OF CLOSING: 24-05-2017CLASS STRENGTH: 49TOTAL HRS:

Session No	Topics planned for the session	Teaching Aids	Assignments/ Tests planned for the chapter	Topics covered As per plan
1.	Module -1: Curve Surveying Curves – Necessity – Types, Simple curves, Elements, Designation of curves	Chalk-talk		
2.	Setting out simple curves by linear methods (numerical problems on offsets from long chord & chord produced method)	"		
3.	Setting out curves by Rankines deflection angle method (numerical problems)	"		
4.	Compound curves, Elements, Design of compound curves	Visual Aids		
5.	Setting out of compound curves (numerical problems)	Chalk-talk		
6.	Reverse curve between two parallel straights (numerical problems on Equal radius and unequal radius)	"		
7.	Transition curves Characteristics	"		

8.	Numerical problems on Length of	"		
	Transition curve			
9.	Numerical problems on Length of	"		
	Transition curve			
10.	Vertical curves – Types – (theory)	Chalk-talk		
11.	Module -2: Geodetic Surveying and	"	Assignment 1	
	Theory of Errors			
	Geodetic Surveying: Principle and			
12	Classification of triangulation system			
12.	selection of base line and stations, Orders	"		
13	Deduction to Control Selection and			
13.	marking of stations	"		
14	Theory of Errors: Introduction, types of			
14.	errors definitions	"		
15.	Laws of accidental errors laws of weights			
	theory of least squares	,,,		
	licory of least squares			
16.	Laws of accidental errors, laws of weights,	"		
	theory of least squares			
17	Delta fan deine meister and distribution			
17.	fulles for giving weights and distribution	"		
18	Bulas for giving weights and distribution	ррт		
10.	of errors to the field observations			
19.	Determination of the most probable values	Chalk-talk		
	of quantities			
20.	Determination of the most probable values	.,	Assignment 2	
	of quantities	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	
21.	Module -3: Introduction to Field	,,		
	Astronomy – Introduction			
22.	Earth & celestial sphere	,,		
	-			
23.	Earth and celestial coordinate systems	"		
24	Forth and calestic acordinate systems			
24.	Earth and celestial coordinate systems	"		
25.	Spherical triangle			
	spheriour unungio	77		
26.	Spherical triangle	,,		
27.	Astronomical triangle	,,		

28.	Astronomical triangle	"		
29.	Napier's rule	"		
30.	Napier's rule	"		
31.	Module -4: Aerial Photogrammetry- Introduction	"	Assignment 3	
32.	Uses of Aerial Photogrammetry, Aerial photographs	"		
33.	Definitions, Scale of vertical and tilted photograph (simple problems)	"		
34.	Scale of vertical and tilted photograph (simple problems)	>>		
35.	Ground Co-ordinates (simple problems)	"		
36.	Ground Co-ordinates (simple problems)	"		
37.	Relief Displacements (Derivation)	"		
38.	Ground control, Procedure of aerial survey, overlaps and mosaics	Chalk-talk		
30	Ground control. Procedure of aerial	"		
39.	survey, overlaps and mosaics			
40.	survey, overlaps and mosaics Stereoscopes, Derivation Parallax(Derivation)	22		
40. 41.	survey, overlaps and mosaicsStereoscopes, DerivationParallax(Derivation)Module -5: Modern SurveyingInstruments- Introduction	"	Assignment 4	
40. 41. 42.	survey, overlaps and mosaics Stereoscopes, Derivation Parallax(Derivation) Module -5: Modern Surveying Instruments- Introduction Electromagnetic spectrum, Electromagnetic distance measurement	>> >> >>	Assignment 4	
40. 41. 42. 43.	survey, overlaps and mosaics Stereoscopes, Derivation Parallax(Derivation) Module -5: Modern Surveying Instruments- Introduction Electromagnetic spectrum, Electromagnetic distance measurement Electromagnetic distance measurement	>> >> >> >> >> >>	Assignment 4	
40. 41. 42. 43. 44.	survey, overlaps and mosaics Stereoscopes, Derivation Parallax(Derivation) Module -5: Modern Surveying Instruments- Introduction Electromagnetic spectrum, Electromagnetic distance measurement Electromagnetic distance measurement Total station	>> >> >> >> >> >> >> >> >> >> >> >> >>	Assignment 4	
40. 41. 42. 43. 44. 45.	Stream controls, Proceeding of Activity survey, overlaps and mosaics Stereoscopes, Derivation Parallax(Derivation) Module -5: Modern Surveying Instruments- Introduction Electromagnetic spectrum, Electromagnetic distance measurement Electromagnetic distance measurement Total station Total station	>> >> >> >> >> >> >> >> >> >>	Assignment 4	
40. 40. 41. 42. 43. 44. 45. 46.	survey, overlaps and mosaics Stereoscopes, Derivation Parallax(Derivation) Module -5: Modern Surveying Instruments- Introduction Electromagnetic spectrum, Electromagnetic distance measurement Electromagnetic distance measurement Total station Total station Lidar scanners for topographical survey	>> >>	Assignment 4	

	earth surface features			
48.	Remote Sensing: Introduction, Principles of energy interaction in atmosphere and earth surface features Contd.	"		
49.	Image interpretation techniques, visual interpretation	"		
50.	Digital image processing, Global Positioning system	"		
51.	Geographical Information System: Definition of GIS, Key Components of GIS	"		
52.	Functions of GIS, Spatial data, spatial information system Geospatial analysis	"		
53.	Integration of Remote sensing and GIS	"		
54.	Applications in Civil Engineering(transportation, town planning)	"	Assignment 5	

#132, AECS Layout, IT Park Road, Kundalahalli, Bangalore – 560

037 T:+9180 28524466 / 77

CMR INSTITUTE OF TECHNOLOGY

Session wise – Course Plan

Department of Civil Engineering

No. Topico	nlannad fan tha gaasian	Teeshing	Accient	al Tasta	r
NO OF HRS/	WK : 5	TOTAL HI	RS	:	
SUBJECT CO	DE : 15CV46	CLASS STR	RENGTH	: 49	
SUBJECT	: Advanced Surveying	DATE	OF CLOSIN	G:24-05-2017	
BRANCH	: CIV	FACULTY I	DATE OF	: 13-02-2017	
SEMESTER	: IV 'B'	NAME C	F THE	: Mr Kiran RG	ſ

Session No	Topics planned for the session	Teaching Aids	Assignments/ Tests planned for the chapter	Topics covered As per plan
1.	Module -1: Curve Surveying Curves – Necessity – Types, Simple curves, Elements, Designation of curves	Chalk-talk		
2.	Setting out simple curves by linear methods (numerical problems on offsets from long chord & chord produced method)	"		
3.	Setting out curves by Rankines deflection angle method (numerical problems)	"		
4.	Compound curves, Elements, Design of compound curves	Visual Aids		
5.	Setting out of compound curves (numerical problems)	Chalk-talk		
6.	Reverse curve between two parallel straights (numerical problems on Equal radius and unequal radius)	"		
7.	Transition curves Characteristics	"		

8.	Numerical problems on Length of	"		
	Transition curve			
9.	Numerical problems on Length of	"		
	Transition curve			
10.	Vertical curves –Types – (theory)	Chalk-talk		
11.	Module -2: Geodetic Surveying and	"	Assignment 1	
	Theory of Errors			
	Geodetic Surveying: Principle and			
	Classification of triangulation system			
12.	Selection of base line and stations, Orders	"		
	of triangulation, Triangulation figures			
13.	Reduction to Centre, Selection and	"		
	marking of stations			
14.	Theory of Errors: Introduction, types of	"		
	errors, definitions			
15.	Laws of accidental errors, laws of weights,	"		
	theory of least squares			
16	Louis of accidental among louis of weights			
10.	theory of loost equares	"		
	theory of least squares			
17.	Rules for giving weights and distribution	,,		
	of errors to the field observations			
18.	Rules for giving weights and distribution	РРТ		
	of errors to the field observations			
19.	Determination of the most probable values	Chalk-talk		
	of quantities			
20.	Determination of the most probable values	"	Assignment 2	
	of quantities			
21.	Module -3: Introduction to Field	"		
	Astronomy – Introduction			
22.	Earth & celestial sphere	"		
23.	Earth and celestial coordinate systems	"		
24.	Farth and celestial coordinate systems			
		,,,		
25.	Spherical triangle	,,		
26.	Spherical triangle	"		
27.	Astronomical triangle	"		

28.	Astronomical triangle	"		
29.	Napier's rule	"		
30.	Napier's rule	"		
31.	Module -4: Aerial Photogrammetry- Introduction	"	Assignment 3	
32.	Uses of Aerial Photogrammetry, Aerial photographs	"		
33.	Definitions, Scale of vertical and tilted photograph (simple problems)	"		
34.	Scale of vertical and tilted photograph (simple problems)	"		
35.	Ground Co-ordinates (simple problems)	"		
36.	Ground Co-ordinates (simple problems)	"		
37.	Relief Displacements (Derivation)	"		
38.	Ground control, Procedure of aerial	Chalk-talk		
	survey, overlaps and mosaics			
39.	survey, overlaps andmosaicsGround control, Procedure of aerialsurvey, overlaps andmosaics	"		
39. 40.	survey, overlaps andmosaicsGround control, Procedure of aerial survey, overlaps and Stereoscopes, Derivation Parallax(Derivation)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
39. 40. 41.	survey, overlaps and mosaicsGround control, Procedure of aerial survey, overlaps and mosaicsStereoscopes, Derivation Parallax(Derivation)Module -5: Modern Surveying Instruments- Introduction	>> >> >> >>	Assignment 4	
39. 40. 41. 42.	survey, overlaps and mosaics Ground control, Procedure of aerial survey, overlaps and mosaics Stereoscopes, Derivation Parallax(Derivation) Module -5: Modern Surveying Instruments- Introduction Electromagnetic spectrum, Electromagnetic distance measurement	>> >> >> >> >> >>	Assignment 4	
39. 40. 41. 42. 43.	survey, overlaps and mosaics Ground control, Procedure of aerial survey, overlaps and mosaics Stereoscopes, Derivation Parallax(Derivation) Module -5: Modern Surveying Instruments- Introduction Electromagnetic spectrum, Electromagnetic distance measurement Electromagnetic distance measurement	>> >> >> >> >> >> >> >> >> >> >> >> >>	Assignment 4	
39. 40. 41. 42. 43. 44.	survey, overlaps and mosaics Ground control, Procedure of aerial survey, overlaps and mosaics Stereoscopes, Derivation Parallax(Derivation) Module -5: Modern Surveying Instruments- Introduction Electromagnetic spectrum, Electromagnetic distance measurement Electromagnetic distance measurement Total station	>> >> >> >> >> >> >> >> >> >> >> >> >>	Assignment 4	
39. 40. 41. 42. 43. 44. 45.	survey, overlaps and mosaics Ground control, Procedure of aerial survey, overlaps and mosaics Stereoscopes, Derivation Parallax(Derivation) Module -5: Modern Surveying Instruments- Introduction Electromagnetic spectrum, Electromagnetic distance measurement Electromagnetic distance measurement Total station	>> >> >> >> >> >> >> >> >> >> >> >> >>	Assignment 4	
39. 40. 41. 42. 43. 44. 45. 46.	survey, overlaps and mosaicsGround control, Procedure of aerial survey, overlaps and mosaicsStereoscopes, Derivation Parallax(Derivation)Module -5: Modern Surveying Instruments- IntroductionElectromagnetic spectrum, Electromagnetic distance measurementElectromagnetic distance measurementTotal stationTotal stationLidar scanners for topographical survey	>> >>	Assignment 4	

	earth surface features			
48.	Remote Sensing: Introduction, Principles of energy interaction in atmosphere and earth surface features Contd.	"		
49.	Image interpretation techniques, visual interpretation	"		
50.	Digital image processing, Global Positioning system	"		
51.	Geographical Information System: Definition of GIS, Key Components of GIS	"		
52.	Functions of GIS, Spatial data, spatial information system Geospatial analysis	"		
53.	Integration of Remote sensing and GIS	"		
54.	Applications in Civil Engineering(transportation, town planning)	"	Assignment 5	