CMR Institute of Technolo	gy, Bangalore		9112
Department: Mechanical Er			
Semester: 06	Sections: A &B	·······	CMR INSTITUTE OF TECHNOLOGY
Mechanics of Materials		10ME61	Lectures/week: 05
Course Instructor: Mr. Vije	eesh M.V.		
Course duration: Feb 2017	- May 2017		

Lecture	Chapter Title /		Portion	scoverage%
#	Reference Literature	Topics	Individual	Cumulative
01		Introduction,		
02		Automation definition, Types of automation		
03		CIM, Processing in manufacturing		
04	UNIT 1:	Production concepts		
	Computer	Mathematical Models-Manufacturing lead	12 50/	
05	Manufacturing	time, production rate, components of	12.5%	12.5%
	Systems	operation time, capacity,		
06	TB 1, TB 2	Utilization and availability, Work-in- process, WIP ratio, TIP ratio		
07		Problems using mathematical model		
07		equations		
08		Problems using mathematical model		
		equations		
		Introduction		
09		Automated flow line symbols, objectives,.		
10		Work part transport-continuous,		
10	LINUT 2.	Intermittent, synchronous, Pallet fixtures		
11	UNIT 2: High Volume	Transfer Mechanism-Linear-Walking beam,	12 504	
11	Production System	roller chain drive	12.370	25%
12	TB 1. RB 2.	Rotary-rack and pinion, Rachet& Pawl,		
	,	Geneva wheel,		
13		Buffer storage, control functions-sequence,		
15		safety, quality		
14		Automation for machining operation		
15		General terminology and analysis,	12.5%	27 50/
16	UNIT 3:	Analysis of Tranfer Line without storage		51.3%

17	Analysis Of	Upper bound approach, lower bound		
	Automated Flow	approach and problems,		
10	Line & Line	Analysis of Transfer lines with storage		
18	Balancing	buffer, Effect of storage, buffer capacity		
	TB 1, RB 2	with simple problems		
19		Partial automation-with numerical problems		
•		Flow lines with more than two stages		
20		Manual Assembly lines, line balancing		
		problem		
21		Work station process time, Cycle time		
22		Precedence constraints and precedence		
	UNIT 4:	diagram		
23	Minimum Rational	Balance delay methods of line balancing-	10.50/	500/
	Work Element	largest Candidate rule	12.5%	50%
24	TB 1, RB 1	Kilbridge and Westers method		
25		Ranked positional weight method		
26		Computerized line balancing.		
27		Design for automated assembly systems,		
27		Types of automated assembly system		
28		Parts feeding devices-elements of parts		
		delivery system-hopper, part feeder		
29	UNIT 5:	Selectors, feedback, escapement and		
_	Automated	placement		
30	Assembly Systems	Analysis of multi-station assembly machine	12.5%	62.5%
31		Analysis of single station assembly		021070
32	TB 1, RB 2	Automated Guided Vehicle System:		
52		Introduction		
33		Vehicle guidance and routing, System		
		management,		
34		Quantitative analysis of AGV's with		
		numerical problems and application		
35		Introduction, Computer Aided Process		
	UNIT 6:	Planning		
36	Computerized	Retrieval types of process planning		
37	Manufacturing	Generative type of process planning	12.5%	75%
38	Planning System	Material requirement planning		
39	1 B I, KB I	Fundamental concepts of MRP inputs to		
		WIKP		

40		Capacity planning		
41		Introduction to CNC		
42		Elements of CNC		
43	UNIT 7.	UNIT 7: CNC machining centers		l
44	CNC Machining	Part programming	12 5%	87 5%
45	Centers TB 1, RB 1	Fundamental steps involved in development of part programming for milling	12.370	07.570
46		Fundamental steps involved in development of part programming for turning		
47		Introduction to Robot configuration		
48		Robot motion,		
49	UNIT 8:	Programming of Robots	12.5%	100%
50	TB 1, TB 2	End effectors		10070
51		Robot sensors		
52		Robot applications		

Syllabus forInternal Assessment Tests(IAT)*

IAT #	Syllabus
IAT-1	Class # 01 – 20
IAT-2	Class # 21 - 40
IAT-3	Class # 41-52

*Seecalendarofeventsfor theschedules of IATs.

		Public	cation info	
Book Type	Code	Author & Title	Edition &	ISBN No
			Publisher	15D 11 110.

		Automation, Production system &	Pearson	
Text Book	TB1	Computer Integrated manufacturingby	Education,	
		M. P. Groover	2007	
Text Book	TB2	Principles of Computer Integrated Manufacturingby S. Kant Vajpayee	Prentice Hall India	
Reference	RB1	Computer Integrated Manufacturing by		
Book	KD1	J. A. Rehg& Henry. W. Kraebber		
Reference Book	RB2	CAD, CAM by Ibrahim Zeid		

CMR Institute of Technology	110		
Department(s): Mechanical I			
Semester: 06	Section(s):A & B		CMR INSTITUTE OF TECHNOLOGY
Design of Machine Elements-II 10ME62		Lectures/week: 06	
Course Instructor(s): Prof. R	ajendra Prasad Reddy		

Session: Jan 2017 – May 2017

Lecture	Book &	Topic <i>s</i>	Portions coverage %	
#	Sections		Individual	Cumulative
1-10	TB1: 1.2 TB1: 2.2-2.11	 1a) Curved Beams: Difference between a curved beam and a straight beam, Derivation for a bending stress in a curved beam, Illustrative examples involving punch presses, crane hooks, S-link, closed rings and chain links 1b)Cylinders & Cylinder heads: Lame's equations, compound cylinders, stresses due to different types of fits, cylinder heads, illustrative examples 	16	16
11-19	TB1: 3.1-3.18	2)Springs: Helical springs –Shear stress induced and deflection, Design procedure, Concentric springs, leaf springs, laminated springs, semi elliptical leaf springs, illustrative examples	14	30
20-28	TB1:4.1- 4.14,4.15- 4.21.2	4) spur & Helical Gears: Spur Gears: Terminology, Tooth profiles, Interference in Involute gears, Design procedure, Helical Gears: Terminology, formative no.of teeth,Design procedure, Illustrative examples	14	44
29-37	TB1: 5.1- 5.7,5.8-5.15	5) Bevel and Worm Gears: Bevel Gears: Terminology, Formative no. of teeth, Design procedure, Worm Gears: Terminology, Design procedure, Illustrative examoles	14	58
38-47	TB1: 6.1-6.6, 6.7-6.17	6) Clutches and Brakes: Single and multi plate clutches, cone clutch, Single and double shoe brakes, Band brake, simple and differential band brakes,Illustrative examples .	16	74
48-52	TB1:8.1-8.5	2) Belts,Ropes and Chains: Flat belts: length and cross section, selection of V-belts, ropes and chains for different applications .	08	82
53-60	TB1-7.1-7.18	7) Lubrication and Bearings: Lubricants, their properties, bearing modulus, co.eff of friction, min oil film thickness, heat generated, design procedure for Ball and Roller bearings, Illustrative exampl es	12	94
61-64	TB1: 8.1- 8.5.8	8) IC engine parts: Design of piston, connecting rod and crank shaft, Illustrative examples	06	100

IAT #	Syllabus
IAT-1	Class # 01 – 19
IAT-2	Class # 20 – 47
IAT-3	Class # 48 – 64

Syllabus for Internal Assessment Tests (IAT)*

* See calendar of events for the schedules of IATs.

Dool: Trmo	Code	Author & Title	Publication infe	ormation
воок туре	Code	Author & The	Edition // Publisher	ISB
Text Book	TB1	JBK Das Design of Machine Elements	I st edition,2013 Sapna Book House	9788128003066
Text Book	TB2	VB Bhandari Design of Machine Elements	5 th edition, Tata McGraw-Hill	9780070681798
Reference	RB1	Hall,Halowenko Machine Design	5 th edition, Tata McGraw-Hill	9780070634589
Reference	RB2	PC Sharma,Aggarwal Machine Design	12thedition,2012 Kataria & sons	

CMR Institute of Technology	911.		
Department: Mechanical Eng			
Semester: 6 Section: A& B			CMR INSTITUTE OF TECHNOLOGY
Heat and Mass Transfer 10ME63			Lectures/week: 06
Course Instructor: Prof. Jite	ender Kumar Chaurasia		
Course duration: Feb 2017- 3			

Class	Book /	Торіс	Percentag	e of portion
#	Sections		COV	vered
			Reference	Cumulative
		Introductory Concepts and Definitions		
		Modes of heat transfer: Basic laws governing		
		conduction, convection, and radiation heat		
		transfer; Overall heat transfer coefficient.		
		Thermal contact resistance.		
		Thermal conductivity; convective heat transfer		
		coefficient; radiation heat transfer		
		Combined heat transfer mechanism. Boundary		
		conditions of 1st, 2nd and 3 rd kind		
		Conduction: Derivation of general three		
1-10	TDO	dimensional conduction equation in Cartesian	12.0/	12.0/
	162	coordinate, special cases, discussion on 3-D	12 %	12 %
		conduction in cylindrical and spherical		
		coordinate systems (No derivation).		
		One dimensional conduction equations in		
		rectangular, cylindrical and spherical coordinates		
		for plane		
		Heat transfer through composite walls		
		Problems on basic conduction equations		
		Problems on steady state heat conduction		
		Problems on steady state heat conduction		
		Problems on steady state heat conduction		
		Variable Thermal Conductivity	r	1
		Derivation for heat flow and temperature		
		distribution in plane wall.		
		Critical thickness of insulation without heat		
	TB1	generation	12 %	24 %
		Thermal resistance concept & its importance.		
		Heat transfer inextended surfaces of uniform		
11-19		cross-section without heat generation, Long fin,		

		Short fin with insulated tip and without insulated			
		tip and fin connected between two heat sources			
		Fin efficiency and effectiveness.			
		Numerical problems on variable thermal			
		conductivity			
		Problems on critical thickness of insulation			
		Problems on fins			
		One-Dimensional Transient Conduction			
		Conduction in solids with negligible internal			
		temperature gradient (Lumped system analysis),			
		Use of Transient temperature charts (Heisler's			
		charts) for transient conduction inslab, long			
20-25	TB1	cylinder and sphere;	12 %	36%	
		Use of transient temperature charts for transient			
		conduction in semi-infinite solids			
		Numerical Problems infinite solids.			
		Numerical Problems infinite solids			
		Numerical Problems semi-infinite solids			
	Concepts and Basic Relations In Boundary Layers				
		Flow over a body velocity boundary layer;			
		critical Reynolds number; general expression for			
		local heat transfer coefficient;			
		General expressions for drag coefficient and			
		drag force; thermal boundary layer			
		Average heat transfer coefficient; Nusselt			
		number.	14 %	50%	
		Flow inside a duct- velocity boundary layer,			
		hydrodynamic entrance length and hydro			
		dynamically developed flow; flow through tubes			
26-35	TB2	(internalflow discussion only).			
		Numericals based on empirical relation given in			
		data handbook			
		Numericals			
		Free Or Natural Convection: Application of			
		dimensional analysis for free convection-			
		physical significance of Grashoff number;			
		Use of correlations of free convection in vertical,			
		horizontal and inclined flat plates, vertical and			
		horizontal cylinders and spheres			
		Numerical problems.			
		Numerical problems			
	r	Forced Convection		r	
		Applications of dimensional analysis for forced			
		convection. Physical significance of Reynolds,			
		Prandtl, Nusselt and Stanton numbers.			

		Use of various correlations for hydro		
0 < 11		dynamically and thermally developed flows	10.04	
36-41	RBI	inside a duct	12 %	62%
		Use of correlations for flow over a flat plate,		
		over a cylinder and sphere.		
		Numerical problems.		
		Numerical problems.		
		Numerical problems.		
		Heat Exchangers		
		Classification and description of heat		
		exchangers;		
40 40	DD 2	overall heat transfer coefficient, fouling and	10.0/	740/
42-48	KB3	touling factor;	12 %	/4%
		Analysis of heat exchangers using LMID		
		method		
		Analysis of neat exchangers using Effectiveness-		
		N1U method		
		Numerical problems.		
		Numerical problems.		
		Numerical problems.		
		Condensation And Boiling		
		Types of condensation (discussion only) Nuggett's theory for laminar condensation on a		
		Nusselt's theory for faminar condensation on a		
		Ventical flat surface;		
		Use of correlations for condensation on vertical flat surfaces, horizontal tube and horizontal tube	12.0/	960/
40.55		hanka	12 %	80%
49-33	KD4	DallKS, Develde number for condensate flowy		
		Regimes of pool boiling, pool		
		hoilingsorrelations		
		Numerical problems on condensation		
		Numerical problems on boiling		
		Numerical problems on boiling		
		transfer analysis. Ficks First law of diffusion (no		
		numericals)		
		Rediction Heat Transfor		
		Thermal radiation: definitions of various terms		
		used in radiation heat transfer:		
		used in radiation near transfer,		
		Stefan-Boltzman law, Kirchoff's law, Planck's		
		law and Wein's displacement law.		
		Radiation heat exchange betweentwo parallel	14 %	100%
56-63	RB2	infinite black surfaces, between two parallel		
		infinite gray surfaces;		
		Effect of radiation shield; intensity of radiation		

and solid angle; Lambert's law;	
Radiation heat exchange between two finite	
surfacesconfiguration	
factor or view factor.	
Numerical problems.	
Numerical problems.	
Numerical problems.	

Syllabus for Internal Assessment Tests (IAT)*:

IAT #	Syllabus
IAT-1	Class # 01 – 19
IAT-2	Class # 20 - 41
IAT-3	Class # 42 - 63

* See calendar of events EVEN-2016-17 for the schedules of IATs.

Dools Truce	Cada		Publication	information
воок туре	Code	Author & Title	Edition & Publisher	ISBN #
Text Book	TB1	Tirumaleshwar, Heat & Mass transfer	Pearson education. 2006	9788177585193
Text Book	TB2	Ozisik, Heat transfer-A basic approach	Tata McGraw Hill 2002	9780070479821.
Reference	RB1	Yunus A- Cengel Heat transfer, a practical approach	Tata Mc Graw Hill	9780077366643
Reference	RB2	Kreith Principles of heat transfer	Thomas Learning 2001	9780849397516
Reference	RB3	Frenk P. Incropera andDavid P. Dewitt, Fundamentals of heat and mass transfer	John Wiley and son's.	0471457280
Reference	RB4	P.K. Nag, Heat transfer	Tata McGraw Hill 2002.	9780070702530

CMR Institute of Technology, E	9112		
Department: Mechanical Engin			
Semester: 06	Sections : A & B	CMR INSTITUTE OF TECHNOLOGY	
Finite Element Methods 10ME64			Lectures/week: 06
Course Instructor: Mr. Prashar	nt S. Hatti		
Course duration: Feb 2017-10	no 2017		

Lecture #	Book &	Book & Topics		overage %
	Sections		Individual	Cumulative
1-8	TB 2 : 1.1 – 1.6	Introduction: Equilibrium equations in elasticity subjected to body force, traction forces, and stress-strain relations for plane stress and plane strains. General description of Finite Element Method, Application and limitations. Types of elements based on geometry. Node numbering, Half band width.	12.5	12.5
9-18	TB 1: 3.8, 2.2	Solution of 1-D Bars: Solutions of bars and stepped bars for displacements, reactions and stresses by using penalty approach and elimination approach. Guass-elimination technique	12.5	12.5
19-28	TB1 : 4.1 – 4.6	Trusses: Stiffness matrix of Truss element. Numerical problems	12.5	12.5
29-36	B 1 : 8.1 – 8.5	Beams: Hermite shape functions for beam element, Derivation of stiffness matrix. Numerical problems of beams carrying concentrated, UDL and linearly varying loads.	12.5	12.5

		Basic Procedure: Euler - Lagrange equation for bar, beam		
37-44	TB 2: 5.1 – 5.9	(cantilever / simply supported fixed) Principle of virtual work, principle of minimum potential energy, Raleigh's Ritz method. Direct approach for stiffness matrix formulation of bar element. Galerkin's method.	12.5	12.5
45-52	TB 1: 5.1 – 5.4 ,	Interpolation Models: Interpolation polynomials- Linear, quadratic and cubic. Simplex complex and multiplex elements. 2D PASCAL's triangle. CST elements-Shape functions and Nodal load vector, Strain displacement matrix and Jacobian for triangular and rectangular element.	12.5	12.5
53-58	RB 2 : 13.1 – 13.8, TB 2: 4.1 – 4.9	Higher Order Elements: Langrange's interpolation, Higher order one dimensional elements-Quadratic and cubic element and their shape functions. Shape function of 2-D quadrilateral element-linear, quadric element Isoparametric, Sub parametric and Super parametric elements. Numerical integration : 1, 2 and 3 gauge point for 1D and 2D cases	12.5	12.5
58-62	TB 2 : 13.1 – 13.5, 14.1 – 14.5	Heat Transfer: Steady state heat transfer, 1D heat conduction governing equations. Functional approach for heat conduction. Galerkin's approach for heat conduction. 1D heat transfer in thin fins.	12.5	12.5

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Syllabus
IAT-1	Class # 01 – 28
IAT-2	Class # 29 – 52
IAT-3	Class # 53 - 62

Litera	ture:			
Book Type			Publication information	
	Code	Author & Thue	Edition // Publisher	ISBN
Text Book	TB1	T.R.Chandrupatla, A.D Belegunde	3 rd Edition, PHI	0-13-061591-9
Text Book	TB2	S.S. Rao, "Finite Element Method in Engineering"	4th Edition, Elsevier	0-7056-7828-3
Reference	RB1	S M Murigendrappa, "Fundamentals of Finite Element method"	2 nd Edition, Interline Publishing	81-7296-098-0
Reference	RB2	S. S. Bhavikatti "Finite Element Analysis"	1 st Edition, New Age International Publishers	81-224-1589-X

CMR Institute of Technology, E Department: Mechanical Engir				
Semester: 06	Sections: A & B		CMR TECHNOLOGY	
Mechatronics & Microprocessor 10ME65			Lectures/week: 05	
Course Instructor: Mr. Venkatesh Naik				
Course duration: 13 Feb, 2017	7 – 24 May 2017			

Lectu	Book &	Tania	Portions coverage in %	
re#	Sections		Reference	Cumulative
1-6	TB1:1.1-1.7 RB1:1.1.1-1.1.112	1) Introduction to Mechatronic Systems: Measurement and control systems, their elements and functions, Microprocessor based controllers.	12.5	12.5
7-13	TB1:2.1-2.12 RB1:2.1-2.30	2) Review of Transducers and Sensors: Definition and classification of transducers. Definition and classification of sensors. Principle of working and applications of light sensors, proximity sensors and Hall effect sensors.	12.5	25
14-20	TB1:9.1-9.7 RB1:4.3-4.3.10	3) Electrical Actuation Systems: Electrical systems, Mechanical switches, solid-state switches, solenoids, DC & AC motors, Stepper motors and their merits and demerits.	12.5	37.5
21-22	TB1:18.1-18.6	5. a) Introduction to Microprocessors: Evolution of Microprocessor, Organization of Microprocessors (Preliminary concepts), basic concepts of Programming of microprocessors.		
23-27	TB1:18.6-18.8	5.b) Review of concepts - Boolean algebra, Logic Gates and Gate Networks, Binary & Decimal number systems, memory representation of positive and Negative integers, maximum and minimum integers. Conversion of real, numbers, floating point notation, representation of floating point numbers, accuracy and range in floating point representation, overflow and underflow, addition of floating point numbers, character representation.	12.5	50

28-34	TB1:18.6-18.8	6) Logic Function: Data word representation. Basic elements of control systems 8085A processor architecture terminology such as CPU, memory and address, ALU, assembler data registers, Fetch cycle, write cycle, state, bus, interrupts. Micro Controllers. Difference between microprocessor and micro controllers. Requirements for control and their implementation in microcontrollers. Classification of micro controllers.	12.5	62.5
35-39	TB1:19.1-19.6	7) Organization & Programming of Microprocessors: Introduction to organization of INTEL 8085-Data and Address buses, Instruction set of 8085, programming the 8085, assembly language programming.	12.5	75
40-44	TB1:19.1-19.6	8) Central Processing Unit of Microprocessors: Introduction, timing and control unit basic concepts, Instruction and data flow, system timing, examples of INTEL 8085 and INTEL 4004 register organization.	12.5	87.5
45-52	TB1:3.1-3.6 4.1-4.6	4) Signal Conditioning: Introduction to signal conditioning. The operational amplifier, Protection, Filtering, Wheatstone bridge, Digital signals, multiplexers, Data acquisition, Introduction to Digital system. Processing Pulse-modulation.	12.5	100

Syllabus forInternal Assessment Tests(IAT)*

abus
-19
)-39
)-52

*Seecalendarofeventsfor theschedulesof IATs.

Book Type	Code	Author & Title	Publicati	on info
			Edition&Publisher	ISBN #
Text Book	TB1	Mechatronics, W.Bolton, Longman,	2nd, Pearson Publications, 2007.	978-81-317-3253-3
Text Book	TB2	Mechatronics Principles & applications, Godfrey C. Onwubolu	Elsevier. 2011	978-0-7506-6379-3
References	RB1	Mechatronics, R. K. Rajput	Third edition,	81-219-2859-1

CMR Institute of Technology, E	2112					
Department: Mechanical Engin						
Semester: 06 Section: A & B			CMR INSTITUTE OF TECHNOLOGY			
Non Traditional Machining 10ME665			Lectures/week: 05			
Course Instructor: Mr. Trishul.M.A						
Course duration: 13 February						

#	Chapter Title/	Topic Covered	Percentage of	
Class	Reference		portion	covered
	Literature		Reference	Cumulative
1-3	Introduction TB1: 2.1 to 2.11	History, Classification, comparison between conventional and Non-conventional machining process selection.	12.5%	12.5%
04-13	Ultrasonic Machining (Usm) TB1: 3.1 to 3.8	Introduction, equipment, tool materials & tool size, abrasive slurry, cutting tool system design:- Effect of parameter: Effect of amplitude and frequency and vibration, Effect of abrasive grain diameter, effect of applied static load, effect of slurry, tool & work material, USM process characteristics: Material removal rate, tool wear, Accuracy, surface finish, applications, advantages & Disadvantages of USM.	12.5%	25%
14- 23	Laser Beam Machining (Lbm) Electron Beam Machining (Ebm) TB1: 4.1 to 4.8	Laser Beam Machining (Lbm): Introduction, equipment of LBM mechanism of metal removal, LBM parameters, Process characteristics, Applications, Advantages & limitations. Electron Beam Machining (Ebm): Principles, equipment, operations, applications, advantages and limitation of EBM.	12.5%	37.5%

		Introduction, Equipment, Variables in		
24-33		AJM: Carrier Gas, Type of abrasive, size of		
	A	abrasive grain, velocity of the abrasive jet,	10 50/	50%
	Abrasive Jet Machining (AJM)	mean number. abrasive particles per unit	12.3%	
		volume of the carrier gas, work material, stand		
	TB1 : 6.1 to 6.6	off distance (SOD), nozzle design, shape of		
	& 7.1 TO 7.4	cut. Process characteristics-Material removal		
		rate, Nozzle wear, Accuracy & surface finish.		
		Applications, advantages & Disadvantages of		
		AJM. Water Jet Machining: Principal,		
		Equipment, Operation, Application,		
		Advantages and limitations of water Jet		
		machinery.		
		Introduction, mechanism of metal		
	Floatricel	removal, dielectric fluid, spark generator,		
21 12		EDM tools (electrodes) Electrode feed control,		
34-43	Dischargo	Electrode manufacture, Electrode wear, EDM		
	Machining (Edm)	tool design, choice of machining operation,	12.5%	62.5%
	TB1: 12.1 to 12.13	electrode material selection, under sizing and		
		length of electrode, machining time. Flushing;		
		pressure flushing, suction flushing, side		
		flushing, pulsed flushing synchronized with		
		electrode movement, EDM process		
		characteristics: metal removal rate, accuracy,		
		surface finish, Heat Affected Zone. Machine		
		tool selection, Application, EDM accessories /		
		applications, electrical discharge grinding,		
		Traveling wire EDM.		

44-48 Chemical Machining (Chm) TB1: 13.1 to 13.15		Introduction, elements of process, chemical blanking process : Preparation of work piece, preparation of masters, masking with photo resists, etching for blanking, accuracy of chemical blanking, applications of chemical blanking, chemical milling (contour machining): process steps –masking, Etching, process characteristics of CHM: material	12.5%	75%
		Hydrogen embrittlement, advantages & application of CHM.		
49-56	Plasma Arc Machining (Pam) TB1: 14.1 to 14.14	Introduction, equipment, non-thermal generation of plasma, selection of gas, Mechanism of metal removal, PAM parameters, process characteristics. Safety precautions, Applications, Advantages and limitations.	12.5%	87.5%
57-62	Electrochemical Machining (ECM) TB1: 15.1 to 15.16	Introduction, study of ECM machine, elements of ECM process : Cathode tool, Anode work piece, source of DC power, Electrolyte, chemistry of the process, ECM Process characteristics – Material removal rate, Accuracy, surface finish, ECM Tooling: ECM tooling technique & example, Tool & insulation materials, Tool size Electrolyte flow arrangement, Handling of slug, Economics of ECM, Applications such as Electrochemical turning, Electrochemical Grinding, Electrochemical Honing, deburring, Advantages, Limitations.	12.5%	100%

Sessional #	Syllabus
T1	Class # 01 – 35
T2	Class # 36 - 56

Syllabus for Internal Assessment Tests (IAT)*

* See calendar of events for the schedules of IATs.

LITERATURE:

	Code		Publication info		
Воок Туре		Author & Title	Edition & Publisher	ISBN #	
Text Book	TB1	Modern machining process, Pandey and Shan	Tata McGraw-Hill Education	0070965536, 9780070965539	
Text Book	TB2	New Technology, Bhattacharya 2000	2 nd edition, Pearson	978-81-317-5919-6	
References	RB1	Non Conventional machining	Narosa Publishing House Pvt.Ltd	978-81-7319-138-1	
References	RB2	Manufacturing technology , P N RAO	Tata McGraw-Hill Education	978-0-07-008769-9	