CMR Institute of Technology, Bangalore

Department(s): Mechanical Engineering

Semester: 08 Section(s): A & B

Operations Management 10ME81 Lectures/week: 06

Course Instructor(s): Mr. Gopi. S

Course duration: 19 Jan 2017 – 06 May 2017

Lectur	Book &	Topics	Portions	coverage %
e#	Sections		Individual	Cumulative
1-6	TB1: Pg 2 To 21	Production and operations Management: Introduction to Operation Management, Historical Development of Operation Management. Trends in Operation Management, Information and Non Manufacturing Systems Productivity, Types of Productivity factors affecting Productivity International dimensions of Productivity. The Environment of Operations. Production System decision a look Head	12.5%	12.5 %
7-12	TB2: 3.1 To 3.6	Decision Making: Introduction, Management as Science, Characteristics of Decisions Framework for decision Making, Decision Methodology. Decision support systems, Economic models. Problems on Economic models-BEA Statistical models, Probability rules and problems on Statistical models and Decision tree analysis.	12.5 %	25 %
13-18	TB1: Pg 63 To 96 TB2: 4.1 To 4.4.10	Forecasting: Opinion and Judgmental methods of forecasting. Time series methods, Components of forecasting. Simple Exponential smoothing technique, Problems, Regression and correlation methods, Problems, Application and control of Forecasts problems Forecast errors.	12.5%	37.5%
19-25	TB1: Pg 168 To 246 TB2: 5.1To 5.6	Capacity & Location Planning: Introduction to system design and capacity manufacturing and service systems Design capacity and systems capacity determinants of effective capacity Determination of capacity requirements capacity planning and types Facility location factors to be considered for selecting locations Location planning for goods and services evaluating location decisions Plant layout, objectives, need for layout decisions Product process fixed and combination layouts their merits and demerits	12.5%	50%
26-34	TB1: Pg 540 To 560 TB2: 10.1 To 10.1.3	Aggregate planning & Master Scheduling: Objectives of Aggregate Planning, Strategies of AP. Aggregate Planning methods, Policy guidelines, Problems on graphical and charting methods of AP Mathematical techniques for Planning Transportation Method for Linear Programming Problems. Master Scheduling concepts and its Objectives. Methods of Master scheduling Problems on Master Scheduling Functions of Master schedule Master Schedule formation	12.5%	62.5%

35-41	TB1: Pg 481 To 514 TB2: 9.1To 9.4.4	Inventory Management: Definition need and importance of inventory control Types of inventories, objectives of inventory control Inventory costs, requirements for effective inventory management Basic EOQ Model derivation with assumptions Problems on basic EOQ Models, Production quantity model and quantitative price discounts and problems	12.5%	75%
42-48	TB1: Pg 574 To 595 TB2: 11.1 To 11.4	Material Requirement Planning: MRP Concept Dependent and independent demand MRP Inputs and outputs Concept of tree structure problems on MRP Concept of MRP-II Concept of ERP And CRP Benefits and limitations	12.5%	87.5%
49-54	TB1: Pg 692 To 721	Purchasing & Supply Chain Management: Concept of purchasing procurement and SCM Concept of tenders open closed and direct tendering process Concept of vendor development, vendor management Problems on vendor rating Concept of make/buy decisions Types of buying	12.5%	100%

Syllabus for Sessional:

Sessional #	Syllabus
T1	Class # 01 – 18
T2	Class # 19 – 41
T3	Class # 42 – 54

Dook Tyme	0.1	Code Author & Title	Publication info		
Book Type	Code	Author & Title	Edition & Publisher	ISBN#	
Text Book	TB1	Production and operations management by Wiliam. J. Stevenson	6 th Edition TaTa McGraw Hill Books	9780073661124	
Text Book	TB2	Production and operations management by Pannerselvam	2 nd Edition PHI	9788120327672	
Reference Book	RB1	Production and Operations Management by Verett. E. Adams, Ronald .J. Ebert	4 th Edition PHI	9780137180080	
Reference Book	RB2	Production and Operations Management by Joseph .G. Monks	2 nd Edition McGraw Hill Books	9780070427204	
Reference Book	RB3	Operations Management for competitive advantage by R.B Chase, N.J. Aquilino, F. Roberts Jacob	McGraw Hill Companies Inc.	0070604487	

CMR Institute of Technolo	<i>·</i> ///		
Department: Mechanical E			
Semester: 08	Sections: A & B		CMR INSTITUTE OF TECHNOLOGY
Mechanics of Materials		10ME82	Lectures/week: 06
Course Instructor: Mr. VII	NAY.M.N		
Course duration: 19th, Jan	2017 - 21 st May 2017		

Lesson Plan

Lecture	Chapter Title /		Portions	coverage %
#	Reference Literature	Topics	Individual	Cumulative
01		Introduction, Concept of automatic controls		
02		Open loop and closed loop systems		
03		Concepts of feedback		
04	UNIT 1 Introduction	Requirements of an ideal control system	12.5%	12.5%
05	miroduction	Types of controllers- Proportional controller	12.570	12.370
		Integral controller, Proportional Integral		
06		controller		
07		Proportional Integral Differential controller		
08		Transfer function models		
09		Models of mechanical systems		
10		Models of electrical circuits		
11		Models of DC and AC motors in control		
11		systems		
12		Models of DC and AC motors in control	12.5%	25%
13		systems Models of thermal systems		
	LINUTE	Models of hydraulic systems and		
14	UNIT- 2 Mathematical	pneumatic systems		
15	Models	Models of hydraulic systems and	12.0 70	2070
13		pneumatic systems		
16		Analogous systems: Force-voltage, Force-		
		Analogous systems: Force-voltage, Force-		
17		current		
10		Analogous systems: Force-voltage, Force-		
18		current		
19		Analogous systems: Force-voltage, Force-		
	LINUTE	Current Transfer Functions definition function		
20	UNIT - 3 Block Diagrams	Transfer Functions definition, function, block representation of systems elements,		
	and Signal Flow	reduction of block diagrams	12.5%	37.5%
21	Graphs	Reduction of block diagrams		

22		Reduction of block diagrams		
23		Reduction of block diagrams		
24		Reduction of block diagrams		
25	-	Signal flow graphs: Mason's gain formula		
26	-	Signal flow graphs: Mason's gain formula		
27	-	Signal flow graphs: Mason's gain formula		
28	-	Signal flow graphs: Mason's gain formula		
29		Introduction		
	-	First order and second order system		
30		response to step, ramp and impulse inputs		
2.1	-	First order and second order system		
31	10.11	response to step, ramp and impulse inputs		
22	UNIT- 4	Concepts of time constant and its		
32	Transient and Steady State	importance in speed of response	12.5%	50%
33	Response Analysis	Concepts of time constant and its		
33	Response Analysis	importance in speed of response		
34		Concepts of time constant and its		
		importance in speed of response		
35	_	System stability: Routh's-Hurwitz Criterion		
36		System stability: Routh's-Hurwitz Criterion		
37		Polar plots		
38		Polar plots		
39		Nyquist stability criterion		
40		Nyquist stability criterion		
41	UNIT - 5	Nyquist stability criterion		
	Frequency	Stability analysis, Relative stability	12.5%	62.5%
42	Response Analysis	concepts,		
42		Stability analysis, Relative stability		
43		concepts,		
44		Gain margin and phase margin, M&N		
44		circles		
		Bode attenuation diagrams, Stability		
45		analysis using Bode plots		
46	UNIT - 6	Simplified Bode Diagrams		
47	Frequency	Stability analysis using Bode plots	12.50/	750/
48	Response Analysis	Stability analysis using Bode plots	12.5%	75%
49	Using Bode Plots	Stability analysis using Bode plots		
50	1	Stability analysis using Bode plots		
51	1	Stability analysis using Bode plots		
52		Definition of root loci, General rules for		
32		constructing root loci		
53		Analysis using root locus plots.		
54	LINIT 7	Analysis using root locus plots.		
55	UNIT - 7 Root Locus Plots	Analysis using root locus plots	12.5%	87.5%
56	Nooi Locus Flois	Analysis using root locus plots		
57		Analysis using root locus plots		
58]	Analysis using root locus plots		
59		Analysis using root locus plots.		
60	UNIT 8	Series and feedback compensation,		_
61	System	Introduction to state concepts,	12.5%	100%
62	Compensation and	State equation of linear continuous data	12.5/0	10070
	State Variable	system		
			· · · · · · · · · · · · · · · · · · ·	

63	Characteristics of	State equation of linear continuous data	
03	Linear	system	
64	Systems	State equation of linear continuous data	
04		system	
65		Matrix representation of state equations,	
03		controllability and observability	
66		Matrix representation of state equations,	
00		controllability and observability	
67		Kalman and Gilberts test	

Syllabus for Internal Assessment Tests (IAT)*

IAT#	Syllabus
IAT-1	Class # 01 – 24
IAT-2	Class # 25 - 48
IAT-3	Class # 49 - 67

^{*} See calendar of events for the schedules of IATs.

			Publication info	
Book Type	Code	ode Author & Title Edition & Publisher		ISBN No.
Text Book	TB1	Modern Control Engineering by Katsuhiko Ogatta	Pearson Education, 2004	
Text Book	TB2	Control Systems Principles and Design by M.Gopal	Tata McGraw- Hill Education, 2002	0070482896, 9780070482890
Reference Book	RB1	Modern Control Systems by Richard.C.Dorf and Robert.H.Bishop	Addison Wesley,1999	
Reference Book	RB2	System dynamics & control by Eronini-Umez, Thomson	Asia pte Ltd - 2002	
Reference Book	RB3	Feedback Control System	Schaum's series. 2001	

CMR Institute of Technology, Bangalore		2112
Department: Mechanical Engineering		
Semester: 08 (B.E)		CMR INSTITUTE OF TECHNOLOGY
Rapid Prototyping	10ME837	Lectures/week:
		05
Course Instructor: Prof. H. Manikandan		

Lesson Plan

Class	Chapter Title /	Lesson Plan	Percentag	e of portion
#	Reference	Topic	cov	vered
	Literature		Reference	Cumulative
		Introduction to Rapid Prototyping		
1-3	TB-2 1.1 – 1.6	Introduction: Need for the compression in product development, history of RP systems, Survey of applications, Growth of RP industry, and classification of RP systems.	10%	10%
		Introduction to Stereolithography	L	
4 – 7	TB-1 10.1-10.5	Stereo Lithography Systems: Principle, Process parameter, Process details, Data preparation, data files and machine details, Application	5%	15%
	1	Selective Laser Sintering		
8-10	TB-1 11.1-11.8	Type of machine, Principle of operation, process parameters, Data preparation for SLS, Applications	5%	20%
		Fused Deposition Modelling	1	
11-14	TB-1 8.1-8.5	Principle, Process parameter, Path generation, Applications.	5%	25%
	<u> </u>	Solid Ground Curing		
15 - 17	TB-2 3.2	Principle of operation, Machine details, Applications	5%	30%
		Laminated Object Manufacturing		
18-20	TB-2 9.1-9.7	Principle of operation, LOM materials. Process details, application.	5%	40%
		Concept Modellers	I	
21-26	TB-1 6.1-6.6, 7.1-7.4	Principle, Thermal jet printer, Sander's model market, 3-D printer. Genisys Xs printer HP system 5, object Quadra systems	10%	50%
	l	Rapid Tooling	<u>l</u>	<u> </u>

27 – 32	TB-1 16.1-16.6 TB-3 5	Indirect Rapid tooling, Silicon rubber tooling, Aluminium filled epoxy tooling, Spray metal tooling, Cast kirksite, 3Q keltool, etc. Direct Rapid Tooling Direct. AIM.	10%	60%	
		Rapid Tooling			
33-38	TB-3 5	Quick cast process, Copper polyamide, Rapid Tool, DMILS, Prometal, Sand casting tooling, Laminate tooling soft Tooling vs. hard tooling.	10%	70%	
	Software for RP				
39-44	TB-2 6.1-6.7	STL files, Overview of Solid view, magics, imics, magic communicator, etc. Internet based software, Collaboration tools.	15%	85%	
Rapid Manufacturing Process Optimization					
45-52	J-1	Factors influencing accuracy. Data preparation errors, Part building errors, Error in finishing, influence of build orientation.	15%	100%	

Syllabus for Sessionals:

Sessional #	Syllabus
T1	Class # 01 – 20
T2	Class # 21 - 32
Т3	Class # 33 - 52

Dook Type	Code	Author & Title	Publication info		
Book Type			Edition & Publisher	ISBN#	
		Kenneth.G.Cooper "Rapid	First Edition		
Text Book	TB-1	Prototyping Technology: Selection	Marcel Dekker	0-8247-0261-1	
		and Application"	Inc.		
		Chua.C.K, Leong K.E and Lim.C.S.	Second Edition		
Text Book	TB-2	"Rapid Prototyping: Principles &	World Scientific	981-238-117-1	
		Applications"	Publishing Co.Ltd		
		Hilton Jacobs "Rapid Tooling:	First Edition		
Text Book	TB-3	Technologies & Industrial	Marcel Dekker	978-0824-7878-82	
		Applications"	Inc.		
	J-1	S.H.Choi and S.Samavedam,			
Journal		"Modelling & Optimization of	Elsevier		
		Rapid Prototyping", Computers in	Eiseviei	-	
		Industry 47 (2002) 39-53			

CMR Institute of Technology, Bangalore Department: Mechanical Engineering			
Semester: 8 th	Section(s): A & B		CMR INSTITUTE OF TECHNOLOGY
Subject: AUTOMOTIVE ENGINEERING		10ME844	Lectures/week: 06
Course Instructor(s): Mr. Cyril			
Course duration: Jan 2017 – June 2017			

LESSON PLAN

Class	Chapter Title /	Topic Percentage of por covered		_
No.	Reference Literature		Reference	Cumulative
1-7	TB1: 1.12, 1.13, 1.19, 1.20	Engine Components and Cooling & Lubrication Systems: Spark Ignition(SI) & Compression Ignition (CI) engines, cylinder – arrangements and their relatives merits, Liners, Piston, connecting rod, crankshaft, valves, valve actuating mechanisms, valve and port timing diagrams, Types of combustion chambers for S.I. Engine and C.I. Engines, Compression ratio, methods of a Swirl generation, choice of materials for different engine components, engine positioning, cooling requirements, methods of cooling, thermostat valves, different lubrication arrangements.	12.5	12.5
8-14	TB1: 1.14 to 1.17	Fuels, Fuel Supply Systems for SI and CI Engines: Conventional fuels, alternative fuels, normal and abnormal combustion, cetane and octane numbers, Fuel mixture requirements for SI engines, types of carburetors, C.D.& C.C. carburetors, multi point and single point fuel injection systems, fuel transfer pumps, Fuel filters, fuel injection pumps and injectors.	12.5	25
15-23	RB1: 1.2 to 1.8 RB2: 2.2 to 2.5 RB4: 5.1 to 5.4	Power Trains: General arrangement of clutch, Principle of friction clutches, Torque transmitted, Constructional details, Fluid flywheel, Single plate, multi-plate and centrifugal clutches. Gear box: Necessity for gear ratios in transmission, synchromesh gear boxes, 3, 4 and 5 speed gear boxes. Free wheeling mechanism, planetary gears systems, over drives, fluid coupling and torque converters, Epicyclic gear box, principle of automatic transmission, calculation of gear ratios, Numerical calculations for torque transmission by clutches.	12.5	37.5
24-31	RB1: 1.14 to 1.15 RB2: 1.6, 1.8	Drive to Wheels: Propeller shaft and universal joints, Hotchkiss and torque tube drives, differential, rear axle, different arrangements of fixing the wheels to rear axle, steering geometry, camber, king pin inclination, included angle, castor, toe in & toe out, condition for exact steering, steering gears, power steering, general arrangements of links and stub axle, over steer, under steer and neutral steer, numerical problems, types of chassis frames.	12.5	50
31-37	TB1: 1.17	Superchargers and Turbochargers: Naturally aspirated engines, Forced Induction, Types pf superchargers, Turbocharger construction and operation, Intercooler, Turbocharger lag.	12.5	62.5
38-45	TB1: 1.28, 1.29	Ignition Systems: Battery Ignition systems, magneto	12.5	75

		Ignition system, Transistor assist contacts. Electronic Ignition, Automatic Ignition advance systems.		
46-53	RB2: 2.7, 2.10, 2.1104 TB1: 1.7 to 1.10 RB4: 4.1 to 4.11	Suspension, Springs and Brakes: Requirements, Torsion bar suspension systems, leaf spring, coil spring, independent suspension for front wheel and rear wheel. Air suspension system. Types of brakes, mechanical compressed air, vacuum and hydraulic braking systems, construction and working of master and wheel cylinder, brake shoe arrangements, Disk brakes, drum brakes, Antilock —Braking systems, purpose and operation of antilock-braking system, ABS Hydraulic Unit, Rear-wheel antilock & Numerical Problems	12.5	87.5
54-61	RB3: 3.18	Automotive Emission Control Systems: Automotive emission controls, Controlling crankcase emissions, Controlling evaporative emissions, Cleaning the exhaust gas, Controlling the air-fuel mixture, Controlling the combustion process, Exhaust gas recirculation, Treating the exhaust gas, Air-injection system, Air-aspirator system, Catalytic converter, Emission standards- Euro I, II, III and IV norms, Bharat Stage II, III norms.	12.5	100

Syllabus for Internal Assessment Test

IAT#	Syllabus
IAT1	Class # 01 – 23
IAT2	Class # 24 - 45
IAT3	Class # 46 - 61

Book Type	Code	Author & Title	Publication information	
			Edition / Publisher	ISBN#
Text Book	TB1	Automotive Mechanics	2 nd Edition, Tata Mc.Graw-Hill	978-0070494916
Text Book	RB1	Automotive Transmissions and Power Trains, William H. Crouse	2 nd edition, Webster Division, Mc.Graw-Hill Company	978-0070146372
References	RB2	Automobile engineering, Dr. Kirpal Singh, Vol. I	12 th Edition, A.K. Jain	81-8014-015-6
References	RB3	Automobile engineering, Dr. Kirpal Singh, Vol. II	12 th Edition, Standard Publishers	81-8014-177-2
References	RB4	Automotive Mechanics, Dr. N. K. Giri	7 th Edition, Khanna Publications	-