CMR Institute of Technology, Bangalore Department: Mechanical Engineering	All so the second secon		
Semester: 03	Section(s): A&B		
Subject: Material Science		15ME32	Lectures/week: 05
Course Instructor(s): Mr. Shreyas P.			
Course duration: AUG-2017 – DEC-2017			

LESSON PLAN

Class	Chapter Title /	Торіс	Percentage of portion	
No.	Reference	covered		vered
	Literature		Reference	Cumulative
1-15	MODULE 1 Basics, Mechanical Behavior, Failure of Materials TB1: 1.2, 1.3, 2.1 TB2 : 1.1, 1.3, 1.6 RB1: 1.1, 1.3	Introduction to Crystal Structure – Coordination number, atomic packing factor, Simple Cubic, BCC, FCC and HCP Structures, Crystal imperfections – point, line, surface and volume imperfections, Atomic Diffusion: Phenomenon, Fick's laws of diffusion;Factors affecting diffusion. Mechanical Behavior : Stress-strain diagrams showing ductile and brittle behavior of materials, Engineering and true strains, Linear and nonlinear elastic behavior and properties, Mechanical properties in plastic range. Stiffness, Yield strength, Offset Yield strength, Ductility, Ultimate Tensile strength, Toughness, Plastic deformation of single crystal by slip and twinning, Mechanisms of strengthening in metals Fracture: Type I, Type II and Type III, Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, Fatigue properties, S-N diagram, Fatigue testing. Creep: Description of the phenomenon with examples, three stages of creep, creep properties, Stress relaxation. Concept of fracture toughness, numerical on diffusion, atrain and atraes relaxation	20%	20%
16-24	MODULE -2 Alloys, Steels, Solidification TB2: 2.2, 2.4, 3.2 RB1 : 2.2, 2.6, 4.1 RB3: 2.1, 2.5, 3.5, 3.6	Concept of formation of alloys: Types of alloys, solid solutions, factors affecting solid solubility (Hume Rothery rules), Binary phase diagrams: Eutectic, and Eutectoid systems, Lever rule, Substitutional and interstitial solid solutions, Intermediate phases, Gibbs phase rule Effect of non- equilibrium cooling, Coring and Homogenization Iron-Carbon (Cementite) diagram: description of phases, Effect of common alloying elements in steel, Common alloy steels, Stainless steel, Tool steel, Specifications of steels. Solidification: Mechanism of solidification, Homogenous and Heterogeneous nucleation, Crystal growth, Cast metal structures Solidification of Steels and Cast irons. Numerical on lever rule	20%	40%
25-36	MODULE -3 Heat Treatment, Ferrous and Non- Ferrous Alloys	Heat treating of metals: Time-Temperature- Transformation (TTT) curves, Continuous Cooling Transformation (CCT) curves, Annealing: Recovery, Recrystallization and	20%	60%

	TB1: 4.1, 4.2, 4.6 TB2 : 3.5, 3.7, 4.1 RB1: 3.4, 4.2, 4.3, 4.4 RB2: 3.1, 3.3, 4.2	Grain growth, Types of annealing, Normalizing, Hardening, Tempering, Martempering, Austempering, Concept of hardenability, Factors affecting it hardenability, surface hardening methods: carburizing, cyaniding, nitriding, flame hardening and induction hardening, Age hardening of aluminum-copper alloys and PH steels. Ferrous materials: Properties, Compositions and uses of Grey cast iron, Malleable iron, SG iron and steel,		
37-46	MODULE -4 Other Materials, Material Selection TB1: 5.1, 5.3, 5.4 TB2 : 4.2, 4.5, 5.1 RB2: 4.3, 4.6, 4.7	Ceramics: Structure types and properties and applications of ceramics. Mechanical / Electrical behavior and processing of Ceramics. Plastics: Various types of polymers/plastics and their applications. Mechanical behaviors and processing of plastics, Failure of plastics. Other materials: Brief description of other materials such as optical and thermal materials Smart materials – fiber optic materials, piezo-electrics, shape memory alloys Shape Memory Alloys – Nitinol, superelasticity, Biological applications of smart materials - materials used as implants in human Body, Selection of Materials, Performance of materials in service Residual life assessment – use of non-destructive testing, Economics, Environment and Sustainability	20%	80%
47-52	MODULE -5 Composite Materials TB1: 6.2, 6.4, 6.5, 7.3 TB2 : 6.1, 6.3, 6.5 RB3: 14.3, 14.4, 15.2	Composite materials - Definition, classification, types of matrix materials & reinforcements,Metal Matrix Composites (MMCs), Ceramic Matrix Composites (CMCs) and Polymer Matrix Composites (PMCs), Particulate- reinforced and fiberreinforced composites, Fundamentals of production of composites, Processes for production of composites, Characterization of composites, Constitutive relations of composites, Determination of composite properties from component properties, Hybrid composites, Applications of composite materials, Numericals on determining properties of composites	20%	100%

Syllabus for Sessionals:

Sessional No.	Syllabus
T1	Class No. 01 – 21
T2	Class No. 22 – 40
Improvement test	Class No. 41-52

Book Type	Code	Author and Title	Publication Details	
Taxt Book	TP 1	Foundations of Materials Science and	4th Edition, McGraw	
TEXT DOOK	IDI	Engineering, Smith	Hill, 2009.	
Taut Deels TD2		Material science and Engineering and	Wilow 2006	
Text DOOK	102	Introduction, William D. Callister,	wiley, 2006.	
Reference Book	RB1	V.Raghavan, Materials Science and	PHI, 2002	

		Engineering	
Deference Deelr	002	Donald R. Askland and Pradeep.P. Phule,	Learning, 4lh Ed.,
кетегенсе воок	KD2	The Science and Engineering of Materials	2003.
Deference Deels	DD2	George Ellwood Dieter, Mechanical	McCrow Hill
Kelelelice Dook	KD3	Metallurgy	

CMR Institute of Technology Department: Mechanical End			
Semester: 03	Semester: 03 Section(s): A & B		CMR INSTITUTE OF TECHNOLOGY
Basic Thermodynamics		15ME33	Lectures/week: 06
Course Instructor(s): Mr. Na	arendra N		
Course duration: 25 July, 20)17 – Nov 2017		

Lesson Plan

#	Chapter Title/	/ Topic Covered Percentage o		of portion
Class	Reference		cove	red
	Literature		Reference	Cumulative
1-6	Module – 1 TB1:1.1-1.7,	Fundamental Concepts & Definitions: Thermodynamic definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic	12.5%	12.5%
	1.10-1.11, 2.1- 2.10. RB3: 1.1-1.14	Systems, Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and units, intensive, extensive properties, specific properties, pressure, specific volume Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and	12.370	12.570
		non-cyclic; processes; Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium, Zeroth law of thermodynamics, Temperature; concepts, scales, international fixed points and measurement of temperature. Constant volume gas thermometer, constant pressure gas thermometer mercury in glass		
		thermometer		
7-12	TB1: 3.1-3.10 RB3: 2.1-2.8	Work and Heat: Mechanics, definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement	12.5%	25%
		work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work. Heat; definition, units and sign convention. Problems		
	Module – 2	First Law of Thermodynamics: Joules experiments,		
	TB1: 4.1-4.10,	equivalence of heat and work. Statement of the First law of		
	5.1-5.8.	thermodynamics, extension of the First law to non - cyclic		
13-19	RB3: 3.1-3.12.	Extension of the First law to control volume; steady flow energy equation (SFEE), important applications.	12.5%	37.5%
	TB1:6.1-6.18. RB3: 4.1-4.15.	Second Law of Thermodynamics: limitations of first law of thermodynamics Devices converting heat to work; (a) in a thermodynamic cycle, (b) in a mechanical cycle. Thermal		
20-26		reservoir, Direct heat engine; schematic representation and efficiency. Devices converting work to heat in a thermodynamic cycle; reversed heat engine, schematic representation,	12.5%	50%
		coefficients of performance. Kelvin - Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics. Equivalence of		
		the two statements; Carnot cycle, Carnot principles. Problems.		
	Module - 3	Reversibility: Definitions of a reversible process, reversible		
27-32	TB1: 7.1-7.8, 7.12, 7.14- 7.15,	heat engine, importance and superiority of a reversible heat engine and irreversible processes; factors that make a process irreversible, reversible heat engines. Unresisted expansion,	12 5%	62.5%
	8.1-8.2, 8.8. RB3: 5.1-5.11.	remarks on Carnot's engine, internal and external reversibility, Definition of the thermodynamic temperature scale. Problems Entropy: Classius inequality, Statement- proof, Entropy- definition, a property, change of entropy, entropy as a quantitative test for irreversibility, principle of increase in entropy, calculation of entropy using Tds relations, entropy as a	12.3%	02.3%
1		coordinate.		

	Module – 4	Availability, Irreversibility and General Thermodynamic		
	TB1: 9.1-9.9.	relations: Introduction, Availability (Exergy), Unavailable	10.00	
33-39	RB3: 6.1-6.8.5.	energy (anergy), Relation between increase in unavailable	12.5%	75%
		energy and increase in entropy. Maximum work, maximum		
		useful work for a system and control volume, irreversibility,		
		second law efficiency (effectiveness). Gibbs and Helmholtz		
		functions, Maxwell relations, Clapeyron equation, Joule		
		Thomson coefficient, general relations for change in entropy,		
		enthalpy, internal energy and specific heats.		
		Pure Substances: P-T and P-V diagrams, triple point and		
10.15		critical points. Sub-cooled liquid, saturated liquid, mixture of	12 5 0/	97 5 0/
40-43		saturated liquid and vapor, saturated vapor and superheated	12.3 %	87.3 %
		vapor states of pure substance with water as example. Enthalpy		
		of change of phase (Latent heat).Dryness fraction (quality), T-S		
		and H-S diagrams, representation of various processes on these		
		diagrams. Steam tables and its use. Throttling calorimeter,		
		separating and throttling calorimeter.		
16.50	Module – 5	Ideal gases: Ideal gas mixtures, Daltons law of partial		
46-52	TB1:10.1-	pressures, Amagat's law of additive volumes, evaluation of		
	10.11.	properties of perfect and ideal gases, Air- Water mixtures and		
	RB3: 8.1-8.8.	related properties, Psychrometric properties, Construction and	12.5%	100%
		use of Psychrometric chart.	121070	10070
		Real gases – Introduction, Air water mixture and related		
		properties, Van-der Waal's Equation of state, Van-der Waal's		
		constants in terms of critical properties, Redlich and Kwong		
		equation of state Beattie-Bridgeman equation, Law of		
		corresponding states, compressibility factor; compressibility		
		chart. Difference between Ideal and real gases.		

Syllabus for Internal Assessment Tests (IAT)*

Sessional #	Classes	Syllabus
T1	1 – 18	33%
T2	19 – 32	30%
T3	33 - 52	37%

* See calendar of events for the schedules of IATs.

LITERATURE:

Book Type	Code	Author and Title	Publication Information	
			Edition & Publisher	ISBN #
Text Book	TB1	"Basic and Applied Thermodynamics", P. K. Nag.	2 nd Edition 2002, Tata McGraw Hill Publication.	978-0-07-015131-4
Reference book	RB1	"Thermodynamics, An Engineering Approach", Yunus A. Cenegal and Michael A. Boles.	2002, Tata McGraw Hill Publication.	978-0-07-026217-1
Reference book	RB2	"An Introduction to Thermodynamics", Y. V. C. Rao	1993, Wiley Eastern.	978-81-7371-4610
Reference book	RB3	"Basic Thermodynamics", R. K. Hedge and Niranjan Murthy.	1 st Edition 2011, Sapna Book House,(P)Ltd., Bangalore.	978-81-280-0717-0
Data Handbooks	DH	"Thermodynamic data hand book", B. T. Nijaguna		
Data Handbooks	DH	"Properties of Refrigerant & Psychometric(tables & Charts in SI Units)", Dr. S. S. Banwait, Dr. S. C. Laroiya	2008, Birla Publication Pvt. Ltd., Delhi.	

Note: From time to time, assignments will be posted on https://sites.google.com/a/cmrit.ac.in//

CMR Institute of	Technology,	Bangalore
	<u> </u>	<u> </u>

Department: Mechanical Engineering

Semester: 03

Section(s): A & B

Subject: Mechanics of Materials

Course Instructor(s): Mr. VINAY M N

0

15ME34

CMR INSTITUTE OF TECHNOLOGY

Lectures/week: 06

Course duration: 07/08/2017 - 25/11/2017

LESSON PLAN

Class	Chapter Title /	Торіс	Percentage of portion	
No.	Reference		cov	vered
	Literature		Reference	Cumulative
		Introduction, Hooke's law		
	Modulo 1	Calculation of stresses in straight, Stepped and tapered		
	Stress and	Sections		
1 1 4	Stress and	Composite sections	200/	200/
1-14	Strain.	Shoer stress and strein Lateral strein and Deisson's	20%	20%
		silear suess and strain, Lateral strain and Poisson's		
	IBI/ KBI	Generalized Hooke's law Bulk modulus		
		Relationship between elastic constants		
		Analysis of Stress and Strain: Plane stress Stresses on		
		inclined planes.		
	Module 2	Principal stresses and maximum shear stress. Principal		
	Analysis of	angles, Shear stresses on principal planes, Maximum		
	stress and	shear Stress		
14-26	strain;	Mohr's circle for plane stress conditions	20%	40%
	Cylinders.	Cylinders: Thin cylinder: Hoop's stress		
		Maximum shear stress		
	TB1/ RB1	Circumferential and longitudinal strains		
		Thick cylinders: Lames equations		
		Shear Forces and Bending Moments: Type of beams.		
		Loads and reactions, Relationship between loads		
		Shear forces and bending moments		
	Module 3	Shear force and bending moments of cantilever beams		
	Shear Force	Pin support and roller supported beams subjected to		
	and Bending	concentrated loads and uniformly distributed constant /		
26-42	Moment;	varying loads.	20%	60%
	Stress in	Stress in Beams: Pure bending, Curvature of a beam		
	beams.	Longitudinal strains in beams, Normal stresses in		
		Beams with rectangular, circular, 'I' and 'T' cross		
	IBI/ IB2/ KBI	sections		
		Flexure Formula, Bending Stresses		
		Deflection of beams (Curvature)		
		Torsion: Circular solid and hollow shafts		
		Torsional moment of resistance, Power		
	Module 4	transmission of straight and stepped shafts		
		Twist in shaft sections, Thin tubular sections,		
10.50	Torsion &	Thin walled sections	2004	0.00/
42-50	Columns	Columns : Buckling and stability	20%	80%
		Critical load, Columns with pinned ends, Columns		
	TB1/ RB1	with other support conditions		
		Effective length of columns		
		Secant formula for columns		
		Strain Energy: Castigliano's theorem I and II		
50-60	Module 5	Load deformation diagram. Strain energy due to	20%	100%
50-00	Strain	normal stresses		

	Energy; Theories of	Strain energy due to Shear stresses, Modulus of resilience	
	Failure	Strain energy due to bending and torsion	
		Theories of Failure: Maximum Principal stress theory	
		Maximum shear stress theory	

Syllabus for Sessionals:

Sessional No.	Syllabus
T1	Class No. 01-14
T2	Class No. 14-50
Improvement test	Class No. 50-60

Literature:

Book Type	Codo		Publication info		
book Type	Code	Author & The	Edition & Publisher	ISBN No.	
Text Book	TB1	Strength of Materials- Dr. R. K Bansal	4th Edition Laxmi Publications Pvt Limited, 2007	9788131800003	
Text Book	TB2	Strength of Materials - S.S Bhavikatti	3rd edition 2006, Vikas Publishing House Pvt. Ltd., New Delhi.	978-81-259-2791-4	
References	RB1	Strength of Materials of - R .S Khurmi	3rd Edition Published by Chand (S.) & Co Ltd ,India	8121905338	

CMR Institute of Technology, Bangalore Department: Mechanical Engineering			
Semester: 03 Section(s): A&B		CMR INSTITUTE OF TECHNOLOGY	
Subject: Elements of Mechanical Engineering 15ME35A			Lectures/week: 05
Course Instructor(s): Mr. SAGAR M BALIG			
Course duration: AUG-2017 – DEC-2017			

LESSON PLAN

Class	Chapter Title /	Торіс	Percentage of portion	
No.	Reference Literature		covered	
			Reference	Cumulative
1-15	MODULE -1 INTRODUCTION & BASIC MATERIALS USED IN FOUNDRY TB 1: 1.1-1.12 & TB 2: 2.5 – 2.10 TB 2: 3.1 – 3.6	 Introduction: Definition, Classification of manufacturing processes. Metals cast in the foundry-classification, factors that determine the selection of a casting alloy. Introduction to casting process & steps involved. Patterns: Definition, classification, materials used for pattern, various pattern allowances and their importance. Sand molding: Types of base sand, requirement of base sand. Binder, Additives definition, need and types Preparation of sand molds: Molding machines-Jolt type, squeeze type and Sand slinger. Study of important molding process: Green sand, core sand, dry sand, sweep mold, CO2 mold, shell mold, investment mold, plaster mold, cement bonded mold.Cores: Definition, need, types. Method of making cores, concept of gating (top, bottom, parting line, horn gate) and risering 	20%	20%
16-24	MODULE -2 MELTING & METAL MOLD CASTING METHODS TB 2 : 4.1 – 4.8 TB 1: 4.1 – 4.3	Melting furnaces: Classification of furnaces, Gas fired pit furnace, Resistance furnace, Coreless induction furnace, electric arc furnace, constructional features & working principle of cupola furnace. Casting using metal molds: Gravity die casting, pressure die casting, centrifugal casting, squeeze casting, slush casting, thixocasting, and continuous casting processes	20%	40%
25-36	MODULE -3 SOLIDIFICATION & NON FERROUS FOUNDRY PRACTICE TB 2 : 6.1 – 6.8 TB 1: 5.1 – 5.3	 Solidification: Definition, Nucleation, solidification variables, Directional solidification-need and methods. Degasification in liquid metals-Sources of gas, degasification methods. Fettling and cleaning of castings: Basic steps involved. Sand Casting defects- causes, features and remedies. Advantages & limitations of casting process Nonferrous foundry practice: Aluminum castings - Advantages, limitations, melting of aluminum using lift-out type crucible furnace. Hardeners used, drossing, gas absorption, fluxing and flushing, grain refining, pouring temperature. Stir casting set up, procedure, uses, advantages and limitations. 	20%	60%
37-46	MODULE -4 WELDING PROCESS	Weldingprocess:Definition,Principles,Classification,Application,Advantages &limitations of welding.Arc welding:Principle,Metal arc welding (MAW),Flux Shielded Metal	20%	80%

	TB 1: 6.1 - 6.12 &	Arc Welding (FSMAW), Inert Gas Welding (TIG		
	TB 2: 5.5 – 5.10	& MIG) Submerged Arc Welding (SAW) and		
	TB 2: 6.1 – 6.6	Atomic Hydrogen Welding (AHW).		
		Special type of welding: Resistance welding		
		principles, Seam welding, Butt welding, Spot		
		welding and Projection welding. Friction welding,		
		Explosive welding, Thermit welding, Laser		
		welding and electron beam welding.		
		Structure of welds, Formation of different zones		
		during welding, Heat Affected Zone (HAZ),		
		Parameters affecting HAZ.		
		Effect of carbon content on structure and		
	MODULE -5	properties of steel, Shrinkage in welds& Residual		
	SOLDERING,	stresses, Concept of electrodes, filler rod and		
	BRAZING AND	fluxes. Welding defects- Detection, causes &		
	METALLURGICAL	remedy.		
47-52	ASPECTS IN	Soldering, brazing, gas welding: Soldering,	20%	100%
	WELDING	Brazing, Gas Welding: Principle, oxy-Acetylene		
	TB 1: 9.1-9.12 &	welding, oxy-hydrogen welding, air-acetylene		
	TB 2: 7.5 – 7.10	welding, Gas cutting, powder cutting.		
	TB 2: 8.1 – 8.6	Inspection methods: Methods used for		
		inspection of casting and welding. Visual,		
		magnetic particle, fluorescent particle, ultrasonic.		
		Radiography, eddy current, holography methods		
		of inspection.		

Syllabus for Sessionals:

Sessional No.	Syllabus
T1	Class No. 01 – 21
T2	Class No. 22 – 40
Improvement test	Class No. 41-52

TEXT BOOKS:

- [1] "Manufacturing Process-I", Dr.K. Radhakrishna, Sapna Book House, 5th Revised Edition 2009.
- [2] "Manufacturing Process-I", Mr. Sagar M B, Sunstar Publication, 1st Edition 2014.
- [3] **"Manufacturing & Technology**: Foundry Forming and Welding", P.N. Rao, 3rd Ed., Tata McGraw Hill, 2003.

REFERENCE BOOKS:

- [1] "Process and Materials of Manufacturing", Roy A Lindberg, 4th Ed. Pearson Edu. 2006.
- [2] **"Manufacturing Technology**", Serope Kalpakjian, Steuen. R. Sechmid, Pearson Education Asia, 5th Ed. 2006.
- [3] **"Principles of metal casting"**, Rechard W. Heine, Carl R. Loper Jr., Philip C. Rosenthal, Tata McGraw Hill Education Private Limited Ed.1976.

CMR Institute of Techno	2110				
Department(s): Mechar					
Semester: 03	Section(s): 3 A & B		CMR INSTITUTE OF TECHNOLOGY		
Computer Aided Machine Drawing 15ME36A			Lectures/week: 05		
Course Instructor(s): Puneeth Kumar N					
Course duration: 7 th Aug. 2017 – 25 th Nov. 2017					

LESSON PLAN

Lecture	Text Book /	Topics	Percentage of portion covered	
#	Reference	·	Individual	Cumulative
1-2	TB1-1.1, 1.2, 1.3, 1.4, 1.5, 1.6 TB2- 2.1, 2.2	Introduction to Machine Drawing	-	-
	ТВ1-2.1, 2.2,	Section of solids- Section of Pyramids		
	2.3	Section of Tetrahedron & Cones		
3-14	RB1-1.1, 1.2, 1.3.1.4, 1.5, 1.6&1.7	Section of Cubes, Prisms & Cylinders	15%	15%
15-20	TB1- 3.1, 3.2 RB1-2.1 to 2.6	Orthographic Projections introduction & problems	10%	25%
	TB1-4.1, 4.2	Thread Forms- Section Views of threads		
21-24	TB2-7.1, 7.2 RB1-4.1 To 4.4	Types of Threads	5%	30%
	TB1-5.1, 5.2,	Fasteners- introduction, types of bolts & Nuts- Hexagonal		
25.20	5.3	headed Bolt and Nut	1.0%	40%
23-30	RB2-4.12, 4.13	Square headed Bolt and Nut	1070	4070
		Assembly Drawing- Screw Jack		
	TB1-9.1 to 9.6,	Plummer Block		
	9.8	Machine Wise		
31-44	RB1-11.1 to	Tool post of a Lathe	40%	80%
	11.5, 11.8 to	IC Engine connecting Rod		
	11.10 & 11.13	Rams Bottom Safety Valve		
		Tail Stock of a Lathe		
	TB1- 7.1 to 7.7	Riveted Joints- Lap joints (Single and Double)		
45-52	RB1-5.1 to 5.5, 5.10	Butt Joints (Single and Double)	5%	85%
53-56	TB1-6.1-6.5 RB-7.1 to 7.3	Keys & Joints- Cotter Joint (Socket& Spigot Type)	5%	90%
		Knuckle Joint(Pin Type)		
	TB1-8.1to8.6	Couplings- introduction and types		
57-60	RB1-8.3, 8.5, 8.7, 8.9	Types Cont	10%	100%

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Syllabus
T1	Class # 01 – 25
T2	Class # 26 – 50
Improvement Test	Class # 51- 60

* See calendar of events for the schedules of IATs.

Literature:

Book Type	Code Author & Title		Publication in	nformation
			Edition & Publisher	ISBN #
Text Book	TB1	Published by VTU belgum, "A primer on Computer Aided Machine Drawing"	2007, VTU Belgum	
Text Book	TB2	N D Bhatt & V M Panchal "Machine Drawing"	Charotar 43 rd Eidition 2008	978-81-85594-84-2
References	RB1	K R Gopalakrishna "Machine Drawing	19 th VTU edition Sept- 2005. Subhas stores	