CMR INSTITUTE OF TECHNOLOGY

Session wise – Course Plan

]			Department of Civil Engine	ering			
	SEMESTE	R :		NAME OF THE FACULTY : VIBHA N DALAWAI DATE OF COMMENCEMENT : 07.08.2017			
	BRANCH	:	CIVIL DATE C				
	SUBJECT	1	: DRCC DATE	OF CLOSING	: 20.11.2017	,	
Class no.	DATE	DAY	Topics planned for the session	Teaching Aids	Assignments/	Торіс	s covered
					Tests planned for		
					the chapter	As pe	r plan
1	07.08.17	1	Introduction, Code requirements, Design Loads				
2	08.08.17	2	Material for RC				
3	09.08.17	3	Design philosophy - Limit state design principles				
4	10.08.17	4	Working stress methods and ultimate load method.				
5	11.08.17	5	Principle of Working stress methods and analysis of beam by WSM				
6	12.08.17	6	Principles of limit state, Factor of safety				
7	14.08.17	1	Characteristics & design loads, Characteristics & design loads.				
8	16.08.17	2	Principles of limit state design and general aspect of ultimate strength.				
9	17.08.17	3	Principles of limit state design and general aspect of ultimate strength.				
10	18.08.17	4	ultimate flexural strength of singly reinforced rectangular sections				
11	19.08.17	5	ultimate flexural strength of doubly				

			reinforced rectangular sections		
12	21.08.17	6	ultimate flexural strength of flanged section,		
13	22.08.17	1	ultimate shear strength of RC section,		
14	23.08.17	2	ultimate torsional strength of RC section,		
15	24.08.17	3	Concepts of development length and anchorage		
16	28.08.17	4	Analysis examples of singly reinforced, doubly reinforced - 2+1 each = 4+2		
17	29.08.17	5	Analysis examples of singly reinforced, doubly reinforced - 2+1 each = 4+2		
18	30.08.17	6	Analysis examples of flanged section,2+1		
19	30.08.17	1	Analysis examples of flanged section,2+1		
20	31.08.17	2	Shear strength and development length problems 2+1 each= 4+2=6		
21	01.09.17	3	General Specification for flexure design of beams-practical requirements		
22	04.09.17	4	General aspects of serviceability- Deflection limits in IS456		
23	05.09.17	5	Calculation of deflection (Theoretical method)		
24	06.09.17	6	calculation of deflections and crack widthcontinue		
25	07.09.17	1	Cracking in structural concrete		

			member	
			Size of beam, cover to	
26	08.09.17	2	reinforcement- spacing of bars.	
27	09.09.17	3	Calculation of deflections and crack width	
28	11.09.17	4	Calculation of deflections and crack width	
29	12.09.17	5	Calculation of deflections and crack width	
30	13.09.17	6	Detailing concepts	
			Size of beam, cover to	
31	14.09.17	1	reinforcement- spacing of bars.	
			Design Procedure for critical section	
32	15.09.17	2	for moment and shear	
			Anchorages of bars, Check for	
33	16.09.17	3	Development length,	
	18.09.17		INTERNAL ASSESSMENT TEST – 1	
	20.09.17		INTERNAL ASSESSMENT TEST – 1	
	21.09.17		INTERNAL ASSESSMENT TEST – 1	
			Reinforcement Requirements,	
			slenderness limit for beams to	
34	22.09.17	4	ensure lateral stability	
			Design example for simply	
35	23.09.17	5	supported beam	
36	25.09.17	6	Design example for cantilever beam	
37	26.09.17	1	Design example for cantilever beam	
38	27.09.17	2	Design example for flanged section.	
39	19.09.17	1	Design example for flanged section.	
40	20.09.17	2	Design example for Rectangular	

			section.	
41	21.09.17	3	Design example for Rectangular section.	
42	22.09.17	4	Design example for Rectangular section.	
43	23.09.17	5	Introduction, General consideration of Design of slabs,	
44	24.09.17	6	Rectangular slab spanning in one direction	
45	26.09.17	1	Rectangular slab spanning in two directions	
46	27.09.17	2	Rectangular slab spanning in one direction with various boundary condition	
47	28.09.17	3	Design of simply supported beam (one way)	
48	03.10.17	4	Design of simply supported beam (one way)	
49	04.10.17	5	Design of simply supported beam (two way)	
50	06.10.17	6	Design of simply supported beam (two way)	
51	07.10.17	1	Design of cantilever beam	
52	09.10.17	2	Design of cantilever beam	
53	10.10.17	3	General aspects , Effective length of column	
54	11.10.17	4	load on columns, Slenderness ratio for column, Minimum eccentricity,	
55	12.10.17	5	Design of short axially loaded columns,	

			Design of column subjected to combined axial load and uniaxial		
56	13.10.17	6	moment		
			Rectangular slab spanning in one		
			direction with various boundary		
57	14.10.17	1	condition		
			Design of column subjected to		
			combined axial load and uniaxial		
58	16.10.17	2	moment		
59	17.10.17	3	Design problems on columns		
60	23.10.17	4	Design problems on columns		
61	24.10.17	5	Design problems on columns		
62	25.10.17	6	Introduction, load for footing		
63	26.10.17	1	Design basis for limit state method		
			Design of isolated rectangular		
64	27.10.17	2	footing for axial load		
			-		
			Design of isolated rectangular		
65	28.10.17	3	footing for uniaxial moment		
66	30.10.17	4	Design of pedestal		
67	31.10.17	5	Design examples of footing		
	51.10.17	5			
68	02.11.17	6	Design examples of footing		
69	03.11.17	1	Design examples of footing		
70	04.11.17	2	Design examples of footing		
	06.11.17		INTERNAL ASSESSMENT TEST – 2		
	07.11.17		INTERNAL ASSESSMENT TEST – 2		
	08.11.17		INTERNAL ASSESSMENT TEST – 2		
			-		
71	09.11.17	3	Distribution of loading on stair		

			cases,		
72	10.11.17	4	Design of staircase problems		
73	11.11.17	5	Design of staircase problems		
74	13.11.17	6	Design of staircase problems		
75	14.11.17	1	Design of staircase problems		
76	15.11.17	2	Design of staircase problems		
77	16.11.17	3	Design of staircase problems		
	17.11.17		IMPROVEMENT TEST		
	18.11.17		IMPROVEMENT TEST		
	20.11.17		IMPROVEMENT TEST		

Syllabus for Sessionals:

Sessional #	Syllabus
T1	Class # 01 – 31
T2	Class # 32 - 62
Т3	Class # 63 - 71

Literature:

Book Type	Code	Author & Title	Publication info	
			Edition & Publisher	ISBN #
Text Book	TB1	Limit state design of reinforced concrete- P.C.Varghese	2 nd edition, PHI learning private limited	978-81-203- 2039-0
<mark>Text Book</mark>	TB2	Reinforced concrete design- Pillai&Menon	3 rd edition,Tata McGraw-Hill	<mark>978-0-07-</mark> 014110-0
References	RB1	Reinforced concrete design- S.N.Sinha	2 nd edition, Tata McGraw-Hill	978-07- 047332-4
References	RB2	Reinforced concrete structures- Dr.B.C.Punmia, Ashok.Kr.Jain&Arun Kr. Jain	Volume 1	-
<mark>Code</mark>	<mark>C1</mark>	IS 456:2000 and SP-16	Fourth revision	•

#132, AECS Layout, IT Park Road, Kundalahalli, Bangalore – 560 037

T:+9180 28524466 / 77

CMR INSTITUTE

OF TECHNOLOGY

Session wise – Course Plan

Department of Civil Engineering.

SEMESTER	:V A	NAME OF THE FACULTY	: Mr. Navanath M Prabha
BRANCH	: CIVIL	DATE OF COMMENCE	MENT : 07.08.2017
SUBJECT	: Analysis of indeterminate structures	DATE OF CLOSING	: 25.11.2017
SUBJECT CO	DE : 10CV53	CLASS STRENGTH	: 49
NO OF HRS/	WK : 6	TOTAL HRS	: 65

	Chapter no	DATE	Topics planned for the session	Teaching	Assignme	Topics
Sessi	(No of hrs planed			Aids	nts/	covered
on	for the chapter)				Tests	As per
No					planned	plan
					for the	
					chapter	
1	1/1	07.08.2017	Introduction to subject:	Board,		
	1/1	07.08.2017		board,		
			Pre-requisite class	chalk,		
				duster		
2	2/1	00.00.2017	Madula I Clana Deflection			
2	2/1	08.08.2017	Module-I Slope Deflection	"		
			Method			
			Introduction to slope deflection			

			method of analysis, sign			
			convention and derivation of slope deflection equations			
3	3/1	10.08.2017	Analysis of Continuous beams by slope deflection method	11		
4	4/1	11.08.2017	Analysis of Continuous beams by slope deflection method	,,		
5	5/1	11.08.2017	Analysis of Continuous beams by slope deflection method	,,		
6	6/1	12.08.2017	Analysis of Continuous beams by slope deflection method	,,		
7	7/1	14.08.207	Analysis of Continuous beams by slope deflection method with sinking support	"		
8	8/1	16.08.207	Analysis of Continuous beams by slope deflection method with sinking support	Board, chalk, duster		
9	9/1	18.08.2017	Analysis of Rigid Joint frame by slope deflection method	,,		
10	10/1	19.08.2017	Analysis of Rigid Joint frame by slope deflection method	,,		
11	11/1	19.08.2017	Analysis of Rigid Joint frame by slope deflection method	,,		
12	12/1	21.08.2017	Analysis of Rigid Joint frame(sway) by slope deflection method	"	Assignme nt- I	
13	13/1	22.08.2017	Analysis of Rigid Joint frame(sway) by slope deflection method	"		
14	14/1	23.08.2017	Analysis of Rigid Joint frame(sway) by slope deflection	"		

			method			
15	1/2	28.08.2017	Moment Distribution Method Introduction, Explanation of distribution factor, carry over factor and development of moment distribution method	"		
16	1/2	29.08.2017	Analysis of Continuous beams by moment distribution method			
17	3/2	30.08.207	Analysis of Continuous beams by moment distribution method	"		
18	4/2	30.08.2017	Analysis of Continuous beams by moment distribution method	"		
19	5/2	31.08.2017	Analysis of Continuous beams (settlement) by moment distribution method	"		
20	6/2	01.09.2017	Analysis of Continuous beams (settlement) by moment distribution method	"		
21	7/2	05.09.2017	Analysis of Continuous beams (settlement) by moment distribution method	,,		
22	8/2	06.09.2017	Analysis of Rigid Joint frame by moment distribution method	"		
23	9/2	06.09.2017	Analysis of Rigid Joint frame by moment distribution method	"		
24	10/2	07.09.2017	Analysis of Rigid Joint frame by moment distribution method	"		
25	11/2	08.09.2017	Analysis of Rigid Joint frame (sway analysis) by moment distribution method	"	Assignme nt –II	
26	12/2	12.09.2017	Analysis of Rigid Joint frame (sway analysis) by moment distribution method			

27	13/2	13.09.2017	Analysis of Rigid Joint frame (sway analysis) by moment distribution method	Board, chalk, duster	
28	14/2	13.09.2017	Analysis of Rigid Joint frame (sway analysis) by moment distribution method	"	
29	1/3	14.09.2017	Kani's Method Introduction, Determination of Rotation factors.	,,	
30	2/3	15.09.2017	Analysis of continuous beam by Kani's Method	"	
31	3/3	22.09.207	Analysis of continuous beam by Kani's Method	"	
32	4/3	25.09.2017	Analysis of continuous beam by Kani's Method	"	
33	5/3	26.09.2017	Analysis of continuous beam with support settlement by Kani's Method	"	
34	6/3	26.09.2017	Analysis of continuous beam with support settlement by Kani's Method	"	
35	7/3	27.09.2017	Analysis of continuous beam with support settlement by Kani's Method	"	
36	8/3	28.09.2017	Analysis of Rigid joint Non Sway plain frames by Kani's Method	,,	
37	9/3	03.10.2017	Analysis of Rigid joint Non Sway plain frames by Kani's Method	"	
38	10/3	06.10.2017	Analysis of Rigid joint Non Sway plain frames by Kani's Method	Board, chalk,	

				duster		
39	11/3	07.10.2017	Analysis of Rigid joint plain frames(sway) by Kani's Method	"		
40	12/3	07.10.2017	Analysis of Rigid joint plain frames(sway) by Kani's Method	"		
41	13/3	09.10.2017	Analysis of Rigid joint plain frames(sway) by Kani's Method	"		
42	14/3	10.10.2017	Analysis of Rigid joint plain frames(sway) by Kani's Method	"	Assignmn t –III	
43	1/4	11.10.2017	Flexibility Matrix Method of Analysis Introduction, Axis and coordinates of member joints	"		
44	2/4	13.10.2017	Development of flexibility matrix for truss element	"		
45	3/4	14.10.2017	Development of flexibility matrix for flexural member	"		
46	4/4	14.10.2017	Analysis of continuous beam by flexibility matrix method	"		
47	5/4	16.10.2017	Analysis of continuous beam by flexibility matrix method	"		
48	6/4	17.10.2017	Analysis of continuous beam by flexibility matrix method	,,	Assignme nt –IV	
49	7/4	23.10.2017	Analysis of Rigid joint beams by flexibility matrix method	"		
50	8/4	25.10.2017	Analysis of Rigid joint beams by flexibility matrix method	Board, chalk, duster		
51	9/4	26.10.2017	Analysis of Rigid joint beams by flexibility matrix method			

52	10/4	26.10.2017	Analysis of truss by flexibility matrix method			
53	11/4	27.10.2017	Analysis of truss by flexibility matrix method			
54	12/4	28.10.2017	Analysis of truss by flexibility matrix method			
55	13/4	30.10.2017	Analysis of truss by flexibility matrix method			
56	1/5	02.11.2017	Stiffness Matrix method of Analysis	"		
			Introduction, Axis and coordinates of member joints			
57	2/5	03.11.2017	Development of flexibility matrix for truss element	"		
58	3/5	03.11.2017	Development of flexibility matrix for flexural member	"		
59	4/5	04.11.2017	Analysis of continuous beam by stiffness matrix method	"	Assignme nt –V	
60	5/5	09.11.2017	Analysis of continuous beam by stiffness matrix method	"		
61	6/5	10.11.2017	Analysis of continuous beam by stiffness matrix method			
62	7/5	14.11.2017	Analysis of Rigid joint beams by Stiffness matrix method	"		
63	8/5	15.11.2017	Analysis of Rigid joint beams by Stiffness matrix method	"		
			Analysis of Rigid joint beams by Stiffness matrix method			
64	9/5	15.11.2017	Analysis of truss by stiffness matrix method	"		
65	10/5	16.11.2017	Analysis of truss by stiffness	,,		

	matrix method		

Signature of faculty

Signature of HOD

Signature of Principal

CMR INSTITUTE OF TECHNOLOGY

Session wise – Lesson Plan

			Department of Civil Engine	ering			
	SEMESTE				Y : DIVYA VISWAN	ATH	
·	BRANCH	:		DATE OF COMMENCEMENT : 07.08.2017			
	SUBJECT	1	: APPLIED GEOTECHNICAL ENGG	DATE OF CL	OSING : 20.11.20	017	
Class no.	DATE	DAY	Topics planned for the session	Teaching Aids	Assignments/	Topics	covered
					Tests planned for		
					the chapter	As per	plan
			Importance of exploration Program,				
			Objectives and stages of				
1	07.08.17	1	exploration.				
			Methods of exploration-Boring-				
2	08.08.17	2	Different methods of boring.				
			Seismic refraction method of				
			geophysical exploration, soil				
3	09.08.17	3	exploration report.				
			Types of samples - undisturbed,				
			disturbed and representative				
4	10.08.17	4	samples				
			Samplers, sample disturbance, area				
			ratio, Recovery ratio, clearance,				
5	11.08.17	5	related numerical problems.				
			Control of ground water during				
			excavation: Dewatering - Ditches				
6	12.08.17	6	and sumps, well point system				
			Vacuum method, Electro- Osmosis				
7	14.08.17	1	method.				
			Determination of ground water				
8	16.08.17	2	level by Hvorselev's method				

			Stabilisation of boreholes - Typical	
9	17.08.17	3	bore log.	
9	17.00.17	5	bore log.	
			Geostatic stresses- Vertical and	
10	18.08.17	4	horizontal stresses	
		•		
			Boussinesq's theory for	
			concentrated loads-derivation,	
			Concluding points ,Draw backs,	
11	19.08.17	5	numerical problems.	
			Isobar-construction, Pressure	
12	21.08.17	6	distribution diagrams	
			Boussinesq's theory for circular	
13	22.08.17	1	loads-derivation, problems	
			Vertical stress under rectangular	
14	23.08.17	2	loads and numerical problems.	
14	23.00.17	2	lodus and numerical problems.	
			Newmark's chart –Construction	
			applications & related numerical	
15	24.08.17	3	problems	
			Westergaard's theories for	
			concentrated, circular and	
16	28.08.17	4	rectangular loads.	
			Comparison of Boussinesq's and	
			Westergaard's analysis and contact	
17	29.08.17	5	pressure.	
			Importance and Concept of	
18	30.08.17	6	Settlement Analysis	
10	30.08.17	0		
			Immediate Consolidation and	
19	30.08.17	1	Secondary settlements	
	_		,	
			Computation using relevant formula	
20	31.08.17	2	for Normally Consolidated soils	
			Numerical problems on	
21	01.09.17	3	settlements.	

			LATERAL EARTH PRESSURE: Active		
22	04.09.17	4	and Passive earth pressures , Earth pressure at rest		
			Variation of pressure. Rankine's		
			Earth pressure theory—assumptions		
23	05.09.17	5	and limitations.		
	00.00.17		Rankine's Earth pressure for		
24	06.09.17	6	inclined backfill and cohesive soils.		
25	07.09.17	1	Related numerical problems.		
			Rankine's Earth pressure for		
			cohesionless soils and related		
26	08.09.17	2	numerical problems		
			Related numerical problems,		
			Coulomb's Earth pressure theory		
27	09.09.17	3	assumptions and limitations		
			Graphical solutions for active earth		
28	11.09.17	4	pressure -Rebhann's methods		
			Graphical solutions for active earth		
29	12.09.17	5	pressure- Culmann's methods		
			Assumptions, finite and semi-		
30	13.09.17	6	infinite slopes.		
			Factor of safety- Definition and		
31	14.09.17	1	Types.		
			Taylor's stability number & use of		
32	15.09.17	2	Taylor's stability charts.		
			Stability of finite slopes by Method		
			of slices for Cohesive Soils, related		
33	16.09.17	3	problem.		
	18.09.17		INTERNAL ASSESSMENT TEST – 1		
	20.09.17		INTERNAL ASSESSMENT TEST – 1		
	21.09.17		INTERNAL ASSESSMENT TEST – 1		

			Stability of finite slopes by Method	
			of slices for C-Φ soils, related	
34	22.09.17	4	problem.	
54	22.09.17	4	problem.	
			Fellineous method for critical slip	
35	23.09.17	5	circle.	
36	25.09.17	6	Related numerical problems	
37	26.09.17	1	Related numerical problems	
			Bearing Capacity- types of	
38	27.09.17	2	foundations.	
			Definitions of ultimate, net and safe	
			bearing capacities, Allowable	
39	19.09.17	1	bearing pressure.	
			Terzaghi's bearing capacity	
			equations -assumptions and	
40	20.09.17	2	limitations	
			Numerical problems on bearing	
41	21.09.17	3	capacity	
		•		
			Determination of bearing capacity	
42	22.09.17	4	using BIS-IS 6403, Related problems.	
			Effect of ground water table on	
43	23.09.17	5	bearing capacity.	
	25.05.17	5		
			Effect of eccentric loading on	
44	24.09.17	6	bearing capacity	
			Numerical problems on effect of	
45	26.09.17	1	water table on bearing capacity	
			Numerical problems on effect of	
46	27.09.17	2	water table on bearing capacity	
			Field methods of evaluation of	
47	28.09.17	3	bearing capacity - Plate load test	
48	03.10.17	4	Standard penetration test	

49	04.10.17	5	Proportioning shallow foundations- isolated footing		
	• • • • • • • • • • • • • • • • • • • •	•	_		
50	06.10.17	6	Proportioning shallow foundations- combined footing		
51	07.10.17	1	Proportioning shallow foundations- combined footing		
52	09.10.17	2	Numerical problems on proportioning.		
53	10.10.17	3	Numerical problems on proportioning.		
54	11.10.17	4	Types and classification of piles		
55	12.10.17	5	Single loaded pile capacity in cohesionless soils (static formula), numerical problems related.		
56	13.10.17	6	Numerical problems related		
57	14.10.17	1	Single loaded pile capacity in cohesive soils (static formula), numerical problems related.		
58	16.10.17	2	Numerical problems related		
59	17.10.17	3	Efficiency of pile group and problems related.		
60	23.10.17	4	Numerical problems related		
61	24.10.17	5	Numerical problems related		
62	25.10.17	6	Group action of piles in cohesionless soils and related problems		
63	26.10.17	1	Numerical problems related		
64	27.10.17	2	Group action of piles in cohesive soils and related problems		

65	28.10.17	3	Numerical problems related		
66	30.10.17	4	settlement of piles.		
67	31.10.17	5	Negative skin friction		
68	02.11.17	6	Pile load tests		
69	03.11.17	1	Pile load tests		
70	04.11.17	2	Under reamed piles-concepts.		
	06.11.17		INTERNAL ASSESSMENT TEST – 2		
	07.11.17		INTERNAL ASSESSMENT TEST – 2		
	08.11.17		INTERNAL ASSESSMENT TEST – 2		
			Numerical problems on method		
71	09.11.17	3	of slices.		
			Numerical problems on bearing		
72	10.11.17	4	capacity		
			Numerical problems on lateral		
73	11.11.17	5	earth pressure		
74	13.11.17	6	Revision		
75	14.11.17	1	Revision		
76	15.11.17	2	Revision		
77	16.11.17	3	Revision		
	17.11.17		IMPROVEMENT TEST		
	18.11.17		IMPROVEMENT TEST		
	20.11.17		IMPROVEMENT TEST		

Syllabus for Sessionals:

Sessional #	Syllabus
T1	Class # 01 – 31
T2	Class # 32 - 53
Т3	Class # 54 - 70

Literature:

Book Type	Code	Author & Title	Publication info	
			Edition & Publisher	ISBN #
Text Book	TB1	Punmia B.C., Soil Mechanics and Foundation Engg	Laxmi Publications Co., New Delhi., 2005, 16th Edition.	81-7008-791- O
Text Book	TB2	Gopal Ranjan and Rao A.S.R., Basic and Applied Soil Mechanics	New Age International (P) Ltd., Newe Delhi, 2000.	978-81-224- 1223-9
References	RB1	Bowles J.E., Foundation Analysis and Design	McGraw Hill Pub. Co. New York, 1996, 5th Edition	978-1-25- 906103-5
References	RB2	T.W.Lambe and R.V.Whitman, Soil Mechanics	John Wiley & Sons	-

#132, AECS Layout, IT Park Road, Kundalahalli, Bangalore – 560 037

T:+9180 28524466 / 77

CMR INSTITUTE

OF TECHNOLOGY

Session wise – Course Plan

Department of Civil Engineering.

SEMESTER	: V A	NAME OF THE FACULTY	: Ms. N. Soundarya
BRANCH	: CIVIL	DATE OF COMMENCEMEN	Г : 07.08.2017
SUBJECT	: Railways, Harbour, Tunneling and Airports	DATE OF CLOSING	: 25.11.2017
SUBJECT CODE	E : 15CV552	CLASS STRENGTH	: 60
NO OF HRS/W	ΥK :6	TOTAL HRS	: 45

	Chapter no	DATE	Topics planned for the session	Teaching	Assignme	Topics
Sessi	(No of hrs planed			Aids	nts/	covered
on	for the chapter)				Tests	As per
No					planned	plan
					for the	
					chapter	
1	1/1	07.08.2017	Significance of Road, Rail, Air and Water transports	Chalk-Talk,		
			water transports	Power point.		

2	2/1	08.08.2017	Coordination of all modes to achieve sustainability	"		
3	3/1	09.08.2017	Elements of permanent way – Rails, Sleepers, Ballast, rail fixtures and fastenings	,,		
4	4/1	09.08.2017	coning of wheels, creep in rails,	,,		
5	5/1	11.08.2017	defects in rails	,,		
6	6/1	12.08.2017	Points and Crossings.	,,		
7	7/1	14.08.2017	Track Stress,	,,		
8	8/1	16.08.2017	Track Stress,	Chalk-Talk,		
				Power point.		
9	9/1	17.08.2017	Route alignment surveys, conventional and modern methods	,,		
10	10/1	17.08.2017	Soil suitability analysis	,,		
11	11/1	19.08.2017	Geometric design of railways, gradient,	,,		
12	12/1	21.08.2017	super elevation, widening of gauge on curves	,,	Assignme nt- I	
13	1/2	22.08.2017	Earthwork	,,		
14	1/2	23.08.2017	Stabilization of track on poor soil, Calculation of Materials required for track laying	,,		
15	3/2	24.08.2017	Stabilization of track on poor soil, Calculation of Materials required for track laying	,,		
16	4/2	24.08.2017	Construction and maintenance of tracks			
17	5/2	29.08.2017	Modern methods of construction & maintenance	,,		
18	6/2	30.08.2017	Railway stations	,,		

19	7/2	02.09.2017	yards and passenger amenities	,,		
20	8/2	04.09.2017	Urban rail	,,		
21	9/2	04.09.2017	Infrastructure for Metro	,,		
22	10/2	06.09.2017	Mono and underground railways	,,		
23	1/3	07.09.2017	Definition of Basic Terms: Planning and Design of Harbours:	,,		
24	2/3	08.09.2017	Requirements, Classification, Location	,,		
25	3/3	09.09.2017	Design Principles	"	Assignme nt –II	
26	4/3	11.09.2017	Design Principles			
27	5/3	11.09.2017	Design Principles	Chalk-Talk, Power point.		
28	6/3	13.09.2017	Design Principles	,,		
29	7/3	14.09.2017	Harbour Layout and Terminal Facilities	,,		
30	8/3	15.09.2017	Harbour Layout and Terminal Facilities	,,,		
31	9/3	22.09.2017	Coastal Structures	,,		
32	10/3	23.09.2017	Inland Water Transport	,,		
33	11/3	23.09.2017	Wave action on Coastal Structures	,,,		
34	12/3	26.09.2017	and Coastal Protection Works.	,,		
35	1/4	27.09.2017	Air transport characteristics, and	,,		

36	2/4	28.09.2017	airport classification,	Chalk-Talk,		
37	3/4	03.10.2017	air port planning: objectives,	Power point.		
38	4/4	04.10.2017	components, layout characteristics,	Chalk-Talk,		
39	5/4	04.10.2017	characteristics of the catchment area,	,,		
40	6/4	07.10.2017	socio-economic criteria for airport site selection	"		
41	7/4	09.10.2017	socio-economic criteria for airport site selection	,,		
42	8/4	10.10.2017	socio-economic criteria for airport site selection	,,	Assignmn t –III	
43	9/4	11.10.2017	ICAO stipulations	,,		
44	10/4	12.10.2017	typical airport layouts,	,,		
45	11/4	14.10.2017	Parking and circulation area.	,,		
46	1/5	16.10.2017	Runway Design: Orientation,	,,		
47	2/5	17.10.2017	Wind Rose Diagram,	,,		
48	3/5	23.10.2017	Wind Rose Diagram,	,,	Assignme nt –IV	
49	4/5	24.10.2017	Wind Rose Diagram,	"		
50	5/5	24.10.2017	Runway length	Chalk-Talk, Power point.		
51	6/5	26.10.2017	Problems on basic and Actual Length,			
52	7/5	27.10.2017	Problems on basic and Actual Length,			

53	8/5	28.10.2017	Geometric design of runways,			
54	9/5	30.10.2017	Geometric design of runways,			
55	10/5	31.10.2017	Configuration and Pavement Design Principles,			
56	11/5	31.10.2017	Elements of Taxiway Design, Airport Zones,	,,		
57	12/5	03.11.2017	Elements of Taxiway Design, Airport Zones,	,,,		
58	13/5	04.11.2017	Elements of Taxiway Design, Airport Zones,	,,,		
59	14/5	09.11.2017	Passenger Facilities and Services,	,,	Assignme nt –V	
60	15/5	10.11.2017	Runway and Taxiway Markings and lighting.	,,,		
61	16/5	13.11.2017	Runway and Taxiway Markings and lighting.			
62	17/5	13.11.2017	Runway and Taxiway Markings and lighting.	,,,		
63	18/5	15.11.2017	Runway and Taxiway Markings and lighting.	,,,		
64	19/5	16.11.2017	Runway and Taxiway Markings and lighting.	"		

Signature of faculty

Signature of HOD

Signature of Principal