CMR Institute of Technology, Bang Department: Mechanical Engineer	f	
Semester: 07(B.E)		CMR INSTITUTE OF TECHNOLOGY
Engineering Economics	10ME701	Lectures/week: 06
Course Instructor: Prof.Cyril		

		Lesson Plan		
Class #	Chapter Title / Reference	co		e of portion vered
	Literature		Reference	Cumulative
	In	troduction to Engineering Econom	ics	
1-3	TB-2	Engineering Decision-Makers, Engineering and Economics, Problem solving and Decision making, Intuition and Analysis, Tactics and Strategy.	10%	10%
4 - 6	TB-1	Engineering Economic Decision, Maze. Law of demand and supply, Law of returns, Interest and Interest factors: Interest rate, Simple interest, Compound interest, Cash - flow diagrams	5%	15%
7-9	TB-1	Personal loans and EMI Payment, Exercises and Discussion.	5%	20%
	I	Present-Worth Comparisons	I	
10-12	TB-1	Conditions for present worth comparisons, Basic Present worth comparisons, Present- worth equivalence, Net Presentworth, Assets with unequal lives, infinite lives	5%	25%
13 - 15	TB-2	Future-worth comparison, Pay-back compare- son, Exercises, Discussions and problems.	5%	30%
	l	Equivalent Annual-Worth Comparisons	5	
16-18	TB-2	Equivalent Annual-Worth Comparison methods, Situations for Equivalent Annual- Worth Comparisons, Consideration of asset life.	5%	35%
19-20	TB-1	Comparison of assets with equal and unequal lives, Use of shrinking fund method, Annuity contract for guaranteed income, Exercises, Problems.	10%	45%

	Ra	te-Of-Return Calculations And Depreciat	tion	
21-24	TB-1	Rate of return, Minimum acceptable rate of return, IRR, IRR misconceptions, Cost of capital concepts.	10%	50%
25-27	TB-3	Causes of Depreciation, Basic methods of computing depreciation charges, Tax concepts, corporate income tax.	10%	60%
		Estimating and Costing		
28-30	TB-3	Components of costs such as Direct Material Costs, Direct Labor Costs, Fixed Over-Heads, Factory cost, Administrative Over-Heads, First cost, Marginal cost, Selling price, Estimation for simple components.	15%	65%
		Financial Ratio Analysis		
31-33	TB-3	Introduction, Nature of ratio analysis, Liquidity ratios, Leverage ratios, Activity ratios, Profitability ratios, Evaluation of a firm's earning power. Comparative statements analysis. Simple numericals	15%	75%
		Financial And Profit Planning		
34-37	TB-3	Introduction, Financial planning, Profit planning, Objectives of profit planning, Essentials of profit planning,	15%	80%
38-42	TB-3	Budget administration, type of budgets, preparation of budgets, advantages, problems and dangers of budgeting. Introduction to Bench Marking of Manufacturing Operation	15%	85%
	Intro	oduction, Scope Of Finance, Finance Fund	ctions	
43-47	TB-3	Statements of Financial Information: Introduction, Source of financial information, Financial statements	15%	90%
48-52	TB-3	Balance sheet, Profit and Loss account, relation between Balance sheet and Profit and Loss account. Simple Numericals	15%	100%

Syllabus for Sessionals:

Sessional #	Syllabus
T1	Class # 01 – 20
T2	Class # 21 - 33
T3	Class # 34 - 52

Book Type	Code	Author & Title	Edition & Publisher
Text Book	TB-1	Engineering Economy, Riggs J.L., 4TH ed.,	McGrawHill, 2002
Text Book	TB-2	Engineering Economy, Thuesen H.G.	PHI , 2002
Text Book	TB-3	Industrial Engineering and Management , OP Khanna	,Dhanpat Rai & Sons. 2000

CMR Institute of Technology, Bangalore	1110		
Department: Mechanical Engineering			
Semester: 07	Section(s): A & B		CMR INSTITUTE OF TECHNOLOGY
Subject: MECHANICAL VIBRATIONS		10ME72	Lectures/week: 06
Course Instructor: Dr. Vijayananda Kaup			
Course duration: Aug 2017 – Nov 2017			

LESSON PLAN

Class No.	Chapter Title / Reference	Торіс	Percentage cove	-
	Literature		Reference	Cumulative
		Class-1: Introduction to the subject; to all the units coming under the subject. Importance of vibration in mechanical design.		
		Class-2: Types of vibrations, Definitions, Simple Harmonic Motion (S.H.M.)		
1-10: Aug 3	Unit – 1: Introduction	Class-3: Joining and splitting of waveforms. Numerical examples		
to		Class-4 & 5: Beat phenomena. More examples	10%	10%
Aug 13	TB1/RB1/RB2	Class-6: Introduction to Fourier Series decomposition of periodic waveform		
		Class 7 to 9: Solving and getting the students to solve problems.		
		Class-10: Recap of all the concepts covered in Unit-1.		
		Class-11: Methods of analysis of un-damped free vibrations of systems. Derivation of natural frequency of spring-mass system.		
11-18: Aug 14	Unit – 2: Undamped (1-DOF) Free Vibrations TB1/RB1/RB2	Class-12: Springs in series and springs in parallel. Some examples. Various forms of Inertial elements present in the system	10%	20%
to Aug 24		Class-13: Compound Pendulum. Effect of mass of spring on natural frequency of vibration		
		Class-14: Effect of mass of spring on the natural frequency.		
		Class-15 to 18: Numerical examples of Type-1 problems		
		Class-19: Types of damping: Analysis with viscous damping		
19-28 Aug 25	Unit – 3: Damped free Vibrations	Class-20: Derivations for over, critical and under damped systems.	15%	
to Sep 04	(1-DOF)	Class-21: Response of viscous damped systems for cases of under-damped systems.		35%
	TB1/RB1/RB2	Class-22: Logarithmic decrement and Problems.		
		Class-23 to 28: Numerical examples		

59-65 Oct 31 to Nov 07	Unit – 4: Forced Vibrations (1- DOF) TB1/RB1/RB2	Class-59: Introduction, Analysis of forced vibration with constant harmonic excitation Class-60: Magnification factor, rotating and reciprocating unbalances Class-61: Excitation of support (relative and absolute amplitudes) Class-62: Force and motion transmissibility Class-63: Energy dissipated due to damping Class-64, 65: Numerical examples	10%	90%
29-38 Sep 07 to Sep 23	Unit – 5: Measuring Instruments and Whirling of shafts TB1/RB1/RB2	Class-29: Seismic Instruments – Vibrometers Class-30: Seismic Instruments – Accelerometer Class-31: Frequency measuring instruments and Problems Class-32: Whirling of shafts with and without damping Class-33: Discussion of speeds above and below critical speeds Class-34 to 38: Numerical Examples	15%	50%
39-48 Sep 25 to Oct 08	Unit – 6: Two DOF Systems TB1/RB1/RB2	Class-39: Principle modes of vibrations, Normal mode and natural frequencies of systems (without damping) Class-40: Simple spring mass systems Class-41: Masses on tightly stretched strings Class-42: Double pendulum Class-43: Torsional systems Class-44: Combined rectilinear and angular systems Class-45: Geared systems and problems Class-46: Undamped dynamic vibration absorber Class-47,48: Numerical examples	15%	65%
49-58 Oct 09 To Oct 21	Unit – 7: Numerical Methods for multi-DOF systems TB1/RB1/RB2	Class-49: Maxwell's reciprocal theorem Class-50: Influence coefficients Class-51: Rayleigh's method Class-52: Dunkerley's method Class-53: Stodola method Class-54: Holzer's method Class-55: Orthogonality of principal modes Class-56: Method of matrix iteration and problems Class-57,58: Numerical examples.	15%	80%

Unit – 8: Modal analysis and Condition Monitoring	Signal analysis, dynamic testing of machines and structures, Experimental modal analysis, Machine condition monitoring and diagnosis.	10%	100%	
TB1/RB1/RB2				

SYLLABUS FOR SESSIONALS

Sessional No.	Syllabus
T1	Class No. 01 – 28
T2	Class No. 29 – 58
Т3	Class No. 58 – 65

LITERATURE

,

Book Type	Code	Author & Title	Publication ir	ıfo
			Edition & Publisher	ISBN No.
Text Book	TB1	Mechanical Vibrations, S. S. Rao	Pearson Education Inc, 4 th edition, 2003.	
References	RB1	Theory of Vibration with Applications, W. T. Thomson, M. D. Dahleh and C. Padmanabhan,	Pearson Education Inc, 5 th edition, 2008.	
References	RB2	Mechanical Vibrations: S. Graham Kelly, Schaum's outline Series, Tata McGraw Hill,	Special Indian Edition, 2007	

CMR Institute of Technology	9112		
Department: Mechanical Eng			
Semester: 07	Section: A & B		CMR INSTITUTE OF TECHNOLOGY
Hydraulics & Pneumatics		10ME73	Lectures/week: 05
Course Instructor: Mr. Venk	atesh Naik		

Course duration: 25 July 2017 – 19 Nov 2017

Class #	Chapter Title / Reference			e of portion rered
	Literature		Reference	Cumulative
1.		UNIT -1: Introduction to Hydraulic Power: Definition of hydraulic system		
2.		Pascal's law, Advantages , Limitations, Applications		
3.	TB1:1.1 TO 1.4	Structure of hydraulic control system, problems on Pascal's law.		
4.	3.2 TO 3.5	The source of Hydraulic Power: Pumps Classification of	12.5	12.5
	5.1 to 5.10	pumps, Pumping theory of positive displacement pumps	12.5	12.5
5.	TB2:1.4	Construction and working of Gear pumps, Vane pumps, Piston pumps		
6.		Fixed and variable displacement pumps, Pump performance characteristics		
7.		Pump Selection factors, problems on pumps.		
8.		UNIT -2: Hydraulic Actuators and Motors: Classification		
		cylinder and hydraulic motors, Linear Hydraulic Actuators		
		[cylinders], single and double acting cylinder,		
9.		Mechanics of Hydraulic Cylinder Loading, mounting		
	TB1:6.1 to 6.9	arrangements, cushioning		
10.	7.1 to 7.7	Special types of cylinders, problems on cylinders,	12.5	25
11.	TB2: 2.2 to 2.4 5.1 to 5.2	Construction and working of rotary actuators such as gear,		
	5.1 (0 5.2	vane, piston motors,		
12.		Motor Theoretical Torque, Power and Flow Rate, Hydraulic		
		Motor Performance,		
13.		symbolic representation of hydraulic actuators ,Problems		
14.		UNIT -3: Control Components in Hydraulic Systems:		
		Classification of control valves, Directional Control Valves-		
		Symbolic representation		
15.		constructional features of poppet, Sliding spool, rotary type		
16.	TB1: 8.1 to 8.8	valves solenoid and Pilot operated DCV, shuttle valve		
17.	TB2: 3.4 4.1 to 4.7	Pressure control valves - types, direct operated types and pilot operated types	12.5	37.5
18.	4.1 (0 4.7	Flow Control Valves - compensated and non-compensated FCV		
19.		Needle valve, Temperature compensated, pressure compensated FCV		
20.		Pressure and temperature compensated FCV, symbolic representation, Problems		
21.		UNIT -6: Introduction to Pneumatic Control: Definition of		
		pneumatic system, Pneumatic system, advantages, limitations, applications,		
22.		Choice of working medium. Characteristic of compressed air.]	
23.	TB1:1.5 TB1: 3.9	Structure of Pneumatic control System, fluid conditioners and FRL unit.	12.5	50
24.		Pneumatic Actuators: Linear cylinder - Types, Conventional type of cylinder- working,		
25.		End position cushioning, seals, Mounting arrangements- Applications.		

26.		Rod - Less cylinders types, working, advantages		
20.		Rotary cylinders-types construction and application,	1	
		Symbols.		
28.		UNIT -7: Pneumatic Control Valves: DCV such as poppet,		
		spool, suspended seat type slide valve, Pressure control valves,		
		flow control valves, types and construction,		
29.		use of memory valve, Quick exhaust valve, time delay valve,		
		shuttle valve, twin pressure valve, symbols		
30.		Simple Pneumatic Control: Direct and indirect actuation		
	TB1:13.8	pneumatic cylinders, speed control of cylinders		
31.	14.5 to 14.8	Supply air throttling and Exhaust air throttling and Exhaust air	12.5	67.5
	14.3 to 14.8 16.4 to 16.5	throttling.	12.5	07.5
32.	10.4 (0 10.5	Signal Processing Elements: Use of Logic gates - OR and AND		
		gates in pneumatic applications, Practical Examples involving		
		the use of logic gates		
33.		Pressure dependant controls- types - construction – practical		
		applications,		
34.		Time dependent controls principle. Construction, practical		
		applications.		
35.		UNIT -4: Hydraulic Circuit Design And Analysis: Control of		
		Single and Double - Acting Hydraulic Cylinder		
36.		Regenerative circuit, Pump Unloading Circuit, Double Pump		
		Hydraulic System		
37.		Counter balance Valve Application, Hydraulic Cylinder		
		Sequencing Circuits		
38.	TB1:9.1 to 9.14	Automatic cylinder reciprocating, system, Locked Cylinder		
	11.3	using Pilot check Valve, Cylinder synchronizing circuit using	12.5	75
		different methods		
39.		Factors affecting synchronization, Hydraulic circuit for force		
		multiplication, Speed Control of Hydraulic Cylinder		
40.		Speed Control of Hydraulic Motors, Safety circuit,		
		Accumulators, types, construction and applications with		
		circuits		
41.		UNIT -5: Maintenance of Hydraulic System: Hydraulic Oils -		
		Desirable properties		
42.	TB1:6.1 to 6.4	General type of Fluids, Sealing Devices		
43.	TB2:12.1 to	Reservoir System, Filters and Strainers	12.5	87.5
44.	12.15	Wear of Moving Parts due to solid -particle Contamination	1	0.10
45.	2	Temperature control (heat exchangers), Pressure switches	1	
46.		Pressure switches, trouble shooting	1	
40.		UNIT -8: Multi- Cylinder Application: Coordinated and		
47.		sequential motion control, Motion and control diagrams.		
		Signal elimination methods, Cascading method- principle,		
48.		Practical application examples (up to two cylinders) using		
40.		cascading method (using reversing valves).		
49.		Electro- Pneumatic Control: Principles - signal input and	1	
43.	TB1:12.1 to	output, pilot assisted solenoid control of directional control		
	12.15	valves	12.5	100
50.	TB2:6.1 to 6.4	Use of relay and contactors. Control circuitry for simple signal	1	
50.				
E 1		cylinder application	1	
51.		Compressed Air: Production of compressed air- Compressors		
F 2		Preparation of compressed air-Driers	4	
52.		Filters, Regulators, Lubricators, Distribution of compressed air		
		Piping layout.		

Book Type	Code	Author & Title	Publicati	on info
			Edition & Publisher	ISBN #
Text Book	TB1	"Fluid power with application", Anthony Esposito,	sixth edition, Pearson Education	978-81-775-8580-3
Text Book	TB2	'Pneumatics and Hydraulics' Andrew parr	2 nd edition, jaico publishing co	978-0-7506-4419-9

Syllabus for Internal Assessment Tests (IAT)*

IAT #	Syllabus
IAT1	1-25
IAT2	26-42
IAT3	43-52

* See calendar of events for the schedules of IATs.

CMR Institute of Technology, Bangalore	110				
Department: Mechanical Engineering					
Semester: 07(B.E)	CMR INSTITUTE OF TECHNOLOGY				
Operation research	10ME74	Lectures/week:			
		06			
Course Instructor: Prof. Gopi S					

Lesson Plan

Lecture #	Book & Topics		Portions	coverage %
	Sections		Individual	Cumulative
1 - 11	RB1- 1.4,2.2,3.1 TB1-2.4,2.5	Introduction to OR, Graphical solutions to LPP: Introduction, Definitions, and Scope of Operation Research / phases of O.R. Applications of OR, L P Problem. Formulation and Graphical Solutions to LPP, Graphical Solutions-Additional problems.	12.5	12.5
12 - 25	RB1- 8.3,8.4,8.5, 9.3,9.4,9.6 TB1-2	Transportation and assignment problems : Transportation problem - (IBFS Types), Transportation Optimality by MODI method Maximization TP, Degeneracy in TP, Formulation of Transportation problems, Assignment Problem, - Formulation, Hungarian method of Solutions to Problems, Special cases in Assignment problems, Unbalanced, Maximization cases, Formulate and solve as assignment problems, Traveling Salesman problem.		25
	RB1- 19.1,19.3,19. 4,19.5.3 RB2-7.9,7.14	Dominance Mixed strategy problems, Solution of 2X2 games,	12.5	37.5
32-38	RB1- 15.2,15.5,15. 7, TB1- 9.1,9.11	PERT Network analysis : PERT -CPM Network, Definitions, Constructions of Networks, Time Calculations, Fulkerson's rule of Numbering Nodes, Critical path, Calculations of ES,EF,LS and LF, Floats in Network, PERT- Probability of Completing projects Standard deviation and Variance of Projects, Cost analysis, Crashing of simple projects.	12.5	
39-44	TB1-10.6, 10.2,10.5	Queing theory : Queuing Theory– Characteristics, Queing models, Birth and Death process, M/M/I Queing models, Applications of M/M/I models, M/M/C models and analysis, Problems.	12.5	62.5
45-51	4.2,5.3,6. 3, RB2- 4.3,5.2	LPP : Simplex Method, Standard form, Canonical form, Problems by Simplex, Degeneracy in LPP. Slack and Surplus variables, Big - M Method, Duality in LPP, Properties of duality, Primal - Dual relationship, Dual simplex method, Problems using Dual simplex method.		75
52-57	RB1- 12.1,12.3, 12.4,12.5, 12.6	Sequencing : Sequencing- Assumptions, Johnson's rule. Sequencing problems- n jobs on 2 machines, Sequencing problems- n jobs on 3 machines, Sequencing problems- n jobs on m machines, 2 jobs on n machines by Graphical method	12.5	87.5
58-62	TB2-9.1,9.2	Integer programming : IV Integer programming problems, Concept, Gomory's cutting plane method, Problems on Integer programming, Branch and Bound method, Additional problems on Integer programming, Zero-One Programming.	12.5	100

Syllabus for Internal Assessment Tests (IAT)*

IAT	Syllabu
IAT-	Class # 01 – 38
IAT-	Class # 39 – 62

De als True a	Cada	A 4h an 9- Title	Publication information		
воок туре	Book Type Code Author & Title		Edition // Publisher	ISBN	
Text Book	TB1	Operation research, P.K. Guptha and DS Hira,	Chand publications, New Delhi-2007	81-219-0281-9	
Text Book	TB2	Operation research by Taha H A,	Pearson Education	978-81-317- 8594-2	
References	RB1	Operation research by S D Sharma	Kedar Nath Ram Nath house	978-81-259- 3139-3	
References	RB2	Operation research by Sreenivasa Reddy M	Interline Publishing	81-7296-039-5	
References	rb3	Operation research Principles and practice by Ravindran Phillips solberg	Wiley publication	9971-51-302-1	

CMR Institute of Technology				
Department(s): Mechanical				
Semester: 07	CMR INSTITUTE OF			
Non-Conventional Energy So	10ME754	Lectures/week:		
		05		
Course Instructor(s): Dr. Harish Babu				

Course duration: AUG. 2017 – NOV. 2017

Class #	Chapter Title / Topic Reference		-	e of portion ered
	Literature		Reference	Cumulative
1		Energy source, India's production and reserves of commercial energy sources.		
2		need for non-conventional energy sources, energy alternatives, solar,		
3	RB1 : 1.1 to	thermal, photovoltaic	42 50/	
4	1.14	Water power, wind biomass, ocean temperature difference, tidal and waves, geothermal	13.5%	13.5 %
5		Tar sands and oil shale, nuclear (Brief descriptions); advantages and disadvantages		
6		Comparison (Qualitative and Quantitative).		
8		Extra-Terrestrial radiation, spectral distribution of extra terrestrial radiation,		
9		solar constant, solar radiation at the earth's surface, beam,		
10		Diffuse and global radiation, solar radiation data.		
11		Pyranometer, shading ring pyroheliometer, sunshine recorder,	13.5 %	27 %
12	RB1 : 2.1 to 2.8	Schematic diagrams and principle of working.		
13		Flux on a plane surface, latitude, declination angle,		
14		surface azimuth angle, hour angle, zenith angle,		
		Solar altitude angle expression for the angle between the		
		incident beam and the normal to a plane surface		
		(No derivation) local apparent time.		
		Apparent motion of sum, day length, numerical examples.		
15		General description, collector geometry, selective surface		
		(qualitative discussion) basic energy-balance equation,		
	RB1: 4.1 to 4.10	stagnation temperature, transmissivity of the cover system,	11.5%	38.5%
4.6		transmissivity absorptivity product, numerical examples.		
16		The overall loss coefficient, correlation for the top loss coefficient, bottom and side loss coefficient, problems (all correlations to be provided).		
17		Temperature distribution between the collector tubes, collector		
		heat removal factor, collector efficiency factor and collector		
		flow factor, mean plate temperature, instantaneous efficiency		
		(all expressions to be provided).		
18		Effect of various parameters on the collector performance;		
		collector orientation, selective surface, fluid inlet temperature,		
		number covers, dust.		
21		Photosynthesis, photosynthetic oxygen production, energy plantation,		
22		bio gas production from organic wastes by anaerobic fermentation, description of bio-gas plants,	11.5%	50%
23	RB2: 7.1 to 7.9	transportation of bio-gas, problems involved with bio-gas production,		
24		application of bio-gas, application of bio-gas in engines, advantages.		
27		Properties of Hydrogen with respected to its utilization as a renewable form of energy,		

28		sources of hydrogen, production of hydrogen, electrolysis of		
20		water, thermal decomposition of water,		
29		Thermo chemical production bio-chemical production.	11.5%	61.5%
30	RB2: 8.1 to 8.8	Gaseous, cryogenic and metal hydrides,	11.570	01.570
31	102.0.1 10 0.0	Application of hydrogen, domestic and industrial safe burning		
51		of hydrogen.		
33		Tides and waves as energy suppliers and their mechanics		
34		fundamental characteristics of tidal power,		
35		Tidal energy, limitations.		
36		Principle of working, Rankine cycle, OTEC power stations in		
		the world		
37	RB2: 6.1 to 6.8	Problems associated with OTEC.	15.5%	77%
38		Principle of working, types of geothermal station with		
		schematic diagram,		
39		geothermal plants in the world, problems associated with		
		geothermal conversion,		
40		scope of geothermal energy		
41		Beam, diffuse and reflected radiation, expression for flux on a		
		tilted surface		
42	RB1: 3.1 to 3.9	numerical examples	11.5%	88.5%
43		Collection and storage, thermal collection devices, liquid flat		
		plate collectors,		
44		solar air heaters concentrating collectors (cylindrical, parabolic, paraboloid) (Quantitative analysis);		
45	sensible heat storage, latent heat storage, application of solar			
45	energy water heating			
	Space heating and cooling, active and passive systems			
		Power generation, refrigeration.		
		Distillation (Qualitative analysis) solar pond,		
46		Principle of working, operational problems.		
47		Description, principle of working and characteristics,		
48		Applications.		
49		Properties of wind, availability of wind energy in India, wind		
		velocity and power from wind		
50	RB1: 5.1 to 5.9 major problems associated with wind power, wind machines;		11.5%	100%
51	Types of wind machines and their characteristics, horizontal			
		and vertical axis wind mills		
52		elementary design principles; coefficient of performance of a		
		wind mill rotor,		
		aerodynamic considerations of wind mill design, numerical		
		Examples.		

Syllabus for Sessionals :

Sessional #	Syllabus
T1	Class # 01 – 17
T2	Class # 15 – 35
Т3	Class # 27 – 50

Book Type	Code	Author & Title	Publication info	
			Edition & Publisher	ISBN #
Text Book	TB1	Non-Conventional Energy Sources by G.D Rai	Khanna Publishers, 2003.	
Text Book	TB2	Renewable Energy Sources and Conversion Technology by N.K.Bansal, Manfred Kleeman & Michael Meliss	Tata McGraw-Hill, 1990	
References	RB1	Renewable Energy Resources, John W. Twidell and Tony Weir	Taylor & Francis, 2006	
References	RB3	B H Khan, "Non Conventional Energy sources"	Tata McGraw Hill, 2ndEdition, 1996	

Course Plan

CMR Institute of Techn				
Department: Mechanic				
Semester: VII (B.E)			CMR INSTITUTE OF TECHNOLOGY	
Experimental Stress	Analysis	10ME761	Lectures/week: 05	
Course Instructor: Prof. Divyesh Mistry				

Class #	Chapter Title /		Lesson Plan Percentage of portion covered	
	Reference Literature	Торіс	Reference	Cumulative
		Introduction to ESA		
1-3	TB-4 1 – 2	Introduction: Overview of ESA, Explanation for all Techniques to find stress strain, Optical Methods work as optical computers, visual Application	5%	5%
		Photo-elasticity		
4 – 12	TB-4 4 TB-2 11.1-11.7	Nature of light, Wave theory of light - optical interference , Stress optic law – effect of stressed model in plane and circular polariscopes, Isoclinics & Isochromatics, Fringe order determination Fringe multiplication techniques, Calibration photo-elastic model materials	10%	15%
	-	Two Dimensional Photo-elas	sticity	-
12- 18	TB-1 6.1-6.10 & TB-4 4	Separation methods: Shear difference method, Analytical separation methods, Model to prototype scaling, Properties of 2D photo-elastic model materials, Materials for 2D photo-elasticity	10%	25%
	1	Three Dimensional Photo ela	atioity	1

19-24	TB-2 14.1-14.9	Stress freezing method, Scattered light photo- elasticity, Scattered light as an interior analyzer and polarizer, Scattered light polariscope and stress data Analyses	15%	40%		
		Photoelastic (Birefringent)	Coatings			
25 - 32	TB-2 16.1-16.8	Birefringence coating stresses, Effects of coating thickness: Reinforcing effects, Poisson's, Stress separation techniques: Oblique incidence, Strip coatings.	5%	45%		
		Electrical Resistance Strain	n Gages			
33-39	TB-2 6.1-6.7 &TB-3 3	Strain sensitivity in metallic alloys, Gage construction, Adhesives and mounting techniques, Gage sensitivity and gage factor, Performance Characteristics, Environmental effects, Strain Gage circuits. Potentiometer, Wheatstone's bridges, Constant current circuits.	10%	55%		
Strain Analysis Methods						
40-46	TB-3 4,	Two element, three element rectangular and delta rosettes, Correction for transverse strain effects, Stress gage, Plane shear gage, Stress intensity factor gage	10%	65%		
Brittle Coatings						
47-52	TB-3 10.1-10.18 & TB-4 9	Coatings stresses, Crack patterns, Refrigeration techniques, Load relaxation techniques, Crack detection methods, Types of brittle coatings, Calibration of coating. Advantages and brittle coating applications.	20%	85%		
Moire Methods						

|--|

Syllabus for Sessionals:

	Sessional #	Syllabus
T1		Class # 01 – 18
T2		Class # 19 - 46
T3		Class # 47 - 59

Book	Code	Author & Title	Publication info	
Туре			Edition & Publisher	ISBN #
		"Experimental Stress Analysis and Motion Measurement",	Second Edition	
Text Book	TB-1	Richard C.Dove and Paul H.Adams	Charles E. Merrill Books.	64-12874
Text Book	TB-2	"Experimental Stress Analysis" Dr. Sadhu Singh	Khanna Publishers	81-7409-182-3
Text Book	TB-3	''Experimental Stress Analysis'', Dally and Riley, McGraw Hill	Second Edition McGRAW- HILL	0-07-Y66242-8
Text Book	TB-4	"e-book on Experimental Stress Analysis" K. Ramesh	Published by IIT Madras	978-81-904235- 6-4